61 research outputs found

    Distality of Attentional Focus and Its Role in Postural Balance Control

    Get PDF
    The role of attentional focusing in motor tasks has been highlighted frequently. The “internal–external” dimension has emerged, but also the spatial distance between body and attended location. In two experiments, an extended attentional focus paradigm was introduced to investigate distality effects of attentional foci on balance performance. First, the distality of the coordinates of the point of focus was varied between a proximal and distal position on an artificial tool attached to the body. Second, the distance of the displayed effect on the wall was varied between a 2.5 and 5 m condition. Subjects were instructed to focus on controlling either a proximal or distal spot on a tool attached to their head, represented by two laser pointers. Subsequently, they needed to visually track their own body-movement effect of one of the laser pointers at a wall while completing various single leg stance tasks. Center of pressure (COP) sway was analyzed using a linear method (classic sway variables) as well as a non-linear method (multiscale entropy). In addition, laser trajectories were videotaped and served as additional performance outcome measure. Experiment 1 revealed differences in balance performance under proximal compared to distal attentional focus conditions. Moreover, experiment 2 yielded differences in balance-related sway measures and laser data between the 2.5 and 5 m condition of the visually observable movement effect. In conclusion, varying the distality of the point of focus between proximal and distal impacted balance performance. However, this effect was not consistent across all balance tasks. Relevantly, the distality of the movement effect shows a significant effect on balance plus laser performance with advantages in more distal conditions. This research emphasizes the importance of the spatial distality of movement effects for human behavior

    Tapping the Full Potential? Jumping Performance of Volleyball Athletes in Game-Like Situations

    Get PDF
    Background: One key issue in elite interactive team sports is the simultaneous execution of motor actions (e.g., dribbling a ball) and perceptual-cognitive tasks (e.g., visually scanning the environment for action choices). In volleyball, one typical situation is to prepare and execute maximal block jumps after multiple-options decision-making and concurrent visual tracking of the ongoing game dynamics to find an optimal blocking location. Based on resource-related dual- and multi-tasking theories simultaneous execution of visual-cognitive and motor tasks may interfere with each other. Therefore, the aim of this study was to investigate whether volleyball-specific perceptual-cognitive demands (i.e., divided attention, decision making) affect blocking performance (i.e., jumping performance and length of the first step after the ready-block-position) compared to relatively isolated jumping performance.Methods: Twenty-two elite volleyball players (1st – 3rd German league) performed block jumps in front of a net construction in a single-task condition (ST) and in two perceptual (-cognitive) dual-task conditions including a dual-task low (DT_L; presenting a picture of an opponent attack on a screen) and a dual-task high condition (DT_H; presenting videos of an offensive volleyball set play with a two-alternative choice).Results: The results of repeated-measures ANOVAs showed a significant effect of conditions on jumping performance [F(2,42) = 33.64, p < 0.001, ηp2 = 0.62] and on the length of the first step after the ready-block-position [F(2,42) = 7.90, p = 0.001, ηp2 = 0.27). Post hoc comparisons showed that jumping performance in DT_H (p < 0.001) and DT_L (p < 0.001) was significantly lower than in ST. Also, length of the first step after the ready-block-position in DT_H (p = 0.005) and DT_L (p = 0.028) was significantly shorter than in ST.Conclusion: Our findings suggest that blocking performance (i.e., jumping height, length of the first step) decreases in elite volleyball players when a perceptual (-cognitive) load is added. Based on the theory of Wickens (2002), this suggests a resource overlap between visual-processing demands for motor performance and for tracking the dynamics of the game. Interference with the consequence of dual-task related performance costs can therefore also be found in elite athletes in their specific motor expert domain

    Stop it! Relationship between sport expertise and response inhibition in elite athletes

    Get PDF
    IntroductionThe dynamic structure of sport games forces players to make time-sensitive decisions and to initiate actions that may then have to be canceled in response to sudden changes in the game situation. Whether and up to which time already initiated movements can still be inhibited is an important criterion for game performance in elite sport. Research indicates that elite athletes show superior motor inhibition performance compared to recreational athletes. However, no study has examined whether differences also emerge among professional elite athletes themselves. Therefore, this study aimed to investigate whether motor inhibition performance is a differential feature among elite athletes, and whether inhibition performance increases with greater expertise.MethodsIn total of 106 elite athletes (ice hockey, basketball, volleyball, American football, handball, and soccer) completed a PC-based procedure to determine motor inhibition performance using the stop-signal reaction time (SSRT) task for hands and feet. In addition, an expertise score was determined for each elite athlete. Multiple linear regression was used to calculate the relationship between expertise and SSRT.ResultsResults showed that the expertise score of the elite athletes was between 3.7 and 11.7 out of 16 possible points (MExpertise = 6.8 points, SD = 1.76). The average SSRT of the hands was 224.0 ms (SD = 35.0); of the feet, 257.9 ms (SD = 48.5). Regression results showed a significant relationship between expertise and SSRT (F(2,101) = 9.38, p = 0.04, R2 = 0.06). SSRTs of the hands were significant predictors of expertise (b = −0.23, t = −2.1, p = 0.04).DiscussionTaken together, results suggest that elite athletes with higher expertise outperform elite athletes with lower expertise, indicating that it is possible to differentiate within elite athletes with respect to inhibition performance of the hands. However, whether expertise affects inhibition performance or vice versa cannot be answered at present

    The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    Get PDF
    In many daily activities, and especially in sport, it is necessary to predict the effects of others´ actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant´s anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others´ actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task

    Borderline personality disorder is associated with lower confidence in perception of emotional body movements

    Get PDF
    Much recent research has shown that personality disorders are associated with an altered emotion perception. Whereas most of this research was conducted with stimuli such as faces, the present study examined possible differences in the perception of emotions expressed via body language and body movements. 30 patients with borderline personality disorder (BPD) and 30 non-patients observed video scenes of emotional human interactions conveyed by point–light displays, rated the depicted valence, and judged their confidence in this rating. Patients with BPD showed no altered emotion perception (i.e., no biased perception in either a negative or a positive direction). They did not perceive and evaluate depicted emotions as being more extreme than healthy controls. However, patients with BPD showed less confidence in their perception of depicted emotions, especially when these were difficult to identify. The findings extend insights on altered emotion perception in persons with BPD to include the field of body movements

    Surmising synchrony of sound and sight:Factors explaining variance of audiovisual integration in hurdling, tap dancing and drumming

    Get PDF
    Auditory and visual percepts are integrated even when they are not perfectly temporally aligned with each other, especially when the visual signal precedes the auditory signal. This window of temporal integration for asynchronous audiovisual stimuli is relatively well examined in the case of speech, while other natural action-induced sounds have been widely neglected. Here, we studied the detection of audiovisual asynchrony in three different whole-body actions with natural action-induced sounds–hurdling, tap dancing and drumming. In Study 1, we examined whether audiovisual asynchrony detection, assessed by a simultaneity judgment task, differs as a function of sound production intentionality. Based on previous findings, we expected that auditory and visual signals should be integrated over a wider temporal window for actions creating sounds intentionally (tap dancing), compared to actions creating sounds incidentally (hurdling). While percentages of perceived synchrony differed in the expected way, we identified two further factors, namely high event density and low rhythmicity, to induce higher synchrony ratings as well. Therefore, we systematically varied event density and rhythmicity in Study 2, this time using drumming stimuli to exert full control over these variables, and the same simultaneity judgment tasks. Results suggest that high event density leads to a bias to integrate rather than segregate auditory and visual signals, even at relatively large asynchronies. Rhythmicity had a similar, albeit weaker effect, when event density was low. Our findings demonstrate that shorter asynchronies and visual-first asynchronies lead to higher synchrony ratings of whole-body action, pointing to clear parallels with audiovisual integration in speech perception. Overconfidence in the naturally expected, that is, synchrony of sound and sight, was stronger for intentional (vs. incidental) sound production and for movements with high (vs. low) rhythmicity, presumably because both encourage predictive processes. In contrast, high event density appears to increase synchronicity judgments simply because it makes the detection of audiovisual asynchrony more difficult. More studies using real-life audiovisual stimuli with varying event densities and rhythmicities are needed to fully uncover the general mechanisms of audiovisual integration

    Differential activation of the lateral premotor cortex during action observation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain.</p> <p>Results</p> <p>Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex.</p> <p>Conclusions</p> <p>The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.</p

    Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin

    Get PDF
    Background: Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berrycolor and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of thisripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages ofripening between 22 and 37 \ub0Brix was assessed using whole-genome micorarrays.Results: The transcript abundance of approximately 18,000 genes changed with \ub0Brix and tissue type. There were alarge number of changes in many gene ontology (GO) categories involving metabolism, signaling and abioticstress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolismand pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with \ub0Brix revealed that therewere statistically significantly higher abundances of transcripts changing with \ub0Brix in the skin that were involved inethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimalfruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamilyof transcription factors changed during these developmental stages. The transcript abundance of a unique clade ofERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene,senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcriptabundance of important transcription factors involved in fruit ripening was also higher in the skin.Conclusions: A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berriesrevealed that these berries went through massive transcriptional changes in gene ontology categories involvingchemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcriptabundance of genes involved in the ethylene signaling pathway of this nonclimacteric fruit were statisticallysignificant in the late stages of ripening when the production of transcripts for important flavor and aroma compoundswere at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role infruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit

    Motorik, Diagnostik und Intervention nach Schlaganfall

    No full text

    An approach to quantify the float effect of float serves in indoor and beach volleyball

    Get PDF
    The float serve is an effective weapon to impede the attack of the opposing team. Because of its great importance in indoor and beach volleyball, we measured and quantified the float effect. We recorded 24 float serves of 12 top athletes in beach volleyball and indoor volleyball, respectively, and analyzed them using video analysis. We determined the 3D trajectories of the ball flight and developed two measures to describe the size of the float effect, the mean residuals and the anticipation error. Both were derived from regression models. These measures suggest that the float effect is greater in the vertical plane than in the horizontal plane, both for indoor and beach volleyball. Analyses of ball release velocities suggest that a certain ball release velocity is a necessary, but not sufficient, condition for ball floating. A validation of the float measurements with subjective expert ratings showed a correlation with the horizontal deviations. This study provides a new approach to analyze floating in on-court volleyball serves and broadens the knowledge for float effects in sports
    corecore