10 research outputs found
Exome sequencing and functional analysis identifies a novel mutation in <em>EXT1</em>Â gene that causes multiple osteochondromas
Multiple osteochondromas (MO) is an inherited skeletal disorder, and the molecular mechanism of MO remains elusive. Exome sequencing has high chromosomal coverage and accuracy, and has recently been successfully used to identify pathogenic gene mutations. In this study, exome sequencing followed by Sanger sequencing validation was first used to screen gene mutations in two representative MO patients from a Chinese family. After filtering the data from the 1000 Genome Project and the dbSNP database (build 132), the detected candidate gene mutations were further validated via Sanger sequencing of four other members of the same MO family and 200 unrelated healthy subjects. Immunohistochemisty and multiple sequence alignment were performed to evaluate the importance of the identified causal mutation. A novel frameshift mutation, c.1457insG at codon 486 of exon 6 of EXT1 gene, was identified, which truncated the glycosyltransferase domain of EXT1 gene. Multiple sequence alignment showed that codon 486 of EXT1 gene was highly conserved across various vertebrates. Immunohistochemisty demonstrated that the chondrocytes with functional EXT1 in MO were less than those in extragenetic solitary chondromas. The novel c.1457insG deleterious mutation of EXT1 gene reported in this study expands the causal mutation spectrum of MO, and may be helpful for prenatal genetic screening and early diagnosis of MO
Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet
Maternal high-fat (HF) diet is associated with offspring metabolic disorder. This study intended to determine whether maternal metformin (MT) administration during gestation and lactation prevents the effect of maternal HF diet on offspring’s skeletal muscle (SM) development and metabolism. Pregnant Sprague-Dawley rats were divided into four groups according to maternal diet {CHOW (11.8% fat) or HF (60% fat)} and MT administration {control (CT) or MT (300 mg/kg/day)} during gestation and lactation: CH-CT, CH-MT, HF-CT, HF-MT. All offspring were weaned on CHOW diet. SM was collected at weaning and 18 weeks in offspring. Maternal metformin reduced plasma insulin, leptin, triglyceride and cholesterol levels in male and female offspring. Maternal metformin increased MyoD expression but decreased Ppargc1a, Drp1 and Mfn2 expression in SM of adult male and female offspring. Decreased MRF4 expression in SM, muscle dysfunction and mitochondrial vacuolization were observed in weaned HF-CT males, while maternal metformin normalized them. Maternal metformin increased AMPK phosphorylation and decreased 4E-BP1 phosphorylation in SM of male and female offspring. Our data demonstrate that maternal metformin during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in offspring, by altering their myogenesis, mitochondrial biogenesis and dynamics through AMPK/mTOR pathways in SM
In vitrocartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold
In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell–BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100–500 µm) than in cortical BMG (5–15 µm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering
The Effects of Mycotoxins and Selenium Deficiency on Tissue-Engineered Cartilage
<b><i>Objective:</i></b> To investigate the effects of 3 mycotoxins, deoxynivalenol (DON), nivalenol (NIV) and T-2 toxin, in the presence and absence of selenium (Se) on the metabolism of tissue-engineered cartilage to mimic conditions found in Kashin-Beck disease (KBD) environments. <b><i>Materials and Methods:</i></b> Chondrocytes were seeded onto bone matrix gelatin (BMG) to construct engineered cartilage. The 3 toxins were added to the culture media for 3 weeks followed by immunhistochemical analyses of collagens type II and X, aggrecan, matrix metalloproteinases 1 and 3 (MMP-1 and MMP-3), MMP inhibitors 1 and 3 (TIMP-1 and TIMP-3) and α<sub>2</sub> macroglobulin (α2M). <b><i>Results:</i></b> Type II collagen was decreased while type X collagen was increased in response to DON, NIV and T-2 toxin. Aggrecan was reduced by all 3 mycotoxins. Compared with the control, the 3 toxins decreased the expression of α2M, TIMP-1 and TIMP-3, and increased the expression of MMP-1 and MMP-3. Se could partially inhibit the effects of DON, NIV and T-2 toxins. <b><i>Conclusion:</i></b> Under the low Se condition, the 3 mycotoxins produced procatabolic changes in cartilage resulting in the loss of aggrecan and type II collagen and promoted a hypertrophic phenotype of chondrocytes characterized by increasing type-X-collagen expression, enhancing the expression of MMPs, while weakening the TIMPs. Se could partially block the effects mentioned above. These results support the hypothesis that the combination of mycotoxin stress and Se deficiency would be the causative factors for KBD.</jats:p
Characteristics of study subjects in MO family.
<p>Characteristics of study subjects in MO family.</p
Identification of a frameshift mutation in codon 486 of <i>EXT1</i> gene.
<p>(a) Sanger sequencing detected the inserted base in the <i>EXT1</i> gene of all affected subjects. Red arrowhead denotes the mutation position; (b) intron-exon structure of <i>EXT1</i> gene. Mutated exon is indicated by red arrowhead; (c) comparison of the functional domains of EXT1 proteins encoded by mutated and normal <i>EXT1</i> genes; (d) multiple sequence alignment of codon 485 to codon 487. Codon 486 is highly conserved across various vertebrates.</p
Immunohistochemisty screening of chondrocytes with functional EXT1 in the superficial layers of cartilage caps of MO(a) and extragenetic solitary chondroma(b) (40×).
<p>The chondrocytes with functional EXT1 in MO are less than those in extragenetic solitary chondroma.</p