65 research outputs found

    Gender-Specific Differences in Clinical Profile and Biochemical Parameters in Patients with Cushing's Disease: A Single Center Experience

    Get PDF
    Cushing's disease (CD) is remarkably prevalent among females; however, more severe clinical presentation and adverse outcomes have been found in males. The purpose of this study was to investigate the overall clinical profile and biochemical parameters in patients with CD to identify the gender differences. Here we describe our series of CD patients referred to our medical center during 2012-2013. Among 73 cases, females presented a marked preponderance compared to males. Males had significantly higher ACTH, BMI, HbA1c, systolic blood pressure, and hemoglobin than females. For the first time, the incidence of fatty liver and hepatic function was also shown to be elevated in males. Multiple linear regression analysis was performed to further investigate the correlation of risk factors with hypokalemia, HbA1c, and systolic blood pressure. Gender and serum cortisol were associated with hypokalemia. Age, gender, and serum cortisol were significantly associated with HbA1c. Additionally, only gender was significantly associated with systolic blood pressure. Regarding clinical presentation, purple striae seemed to occur more frequently in males than in females. Thus, more severe clinical presentation, biochemical parameters, and complications were found in males than in females. Clinical professionals should pay more attention to the diagnosis and management of males with CD

    Two ultraviolet radiation datasets that cover China

    Get PDF
    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes

    Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water

    No full text
    Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots’ structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals.European Research Council (ERC)Alexander von Humboldt FoundationDepto. de Química AnalíticaFac. de Ciencias QuímicasTRUEpu

    Function of Thymosin Beta-4 in Ethanol-Induced Microglial Activation

    No full text
    Background/Aims: Neuroinflammation mediated by activated microglia may play a pivotal role in a variety of central nervous system (CNS) pathologic conditions, including ethanol-induced neurotoxicity. The purpose of this study was to investigate the function of Tβ4 in ethanol-induced microglia activation. Methods: Quantitative real-time PCR was conducted to assess the expression of Tβ4 and miR-339-5p. Western blot analysis was used to measure the expression of Tβ4, phosphorylated p38, ERK, JNK, Akt, and NF-κB p65. The concentration of TNF-α and IL-1β was determined using ELISA. NO concentration was measured using a nitric oxide colorimetric BioAssay Kit. Double immunofluorescence was performed to determine Tβ4 expression, in order to assess microglial activation in neonatal mouse FASD model. Results: Increased Tβ4 expression was observed in ethanol treated microglia. Knockdown of Tβ4 enhanced ethanol-induced inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and nitric oxide (NO) in BV-2 cells was performed. Exogenous Tβ4 treatment significantly inhibited expression and secretion of these inflammatory mediators. Tβ4 treatment attenuated p38, ERK MAPKs, and nuclear factor-kappa B (NF-κB) pathway activation, and enhanced miR-339-5p expression induced by ethanol exposure in microglia. A neonatal mouse fetal alcohol spectrum disorders (FASD) model showed that Tβ4 expression in the microglia of the hippocampus was markedly enhanced, while Tβ4 treatment effectively blocked the ethanol-induced increase in inflammatory mediators, to the level expressed in vehicle-treated control animals. Conclusion: This study is the first to demonstrate the function of Tβ4 in ethanol-induced microglia activation, thus contributing to a more robust understanding of the role of Tβ4 treatment in CNS disease

    Water-Soluble pillararene-functionalized graphene oxide for in vitro raman and fluorescence dual-mode imaging

    No full text
    This study provides a successful preparation of biocompatible hybrid materials (1-GO and 2-GO) by the integration of graphene oxide (GO) with water-soluble pillararenes (bolaamphiphile 1 and tadpolelike amphiphile 2) for dual-mode Raman and fluorescence bioimaging in vitro. The investigations show that pillararenes 1 and 2 were loaded onto the surface of GO through strong hydrogen-bonding interactions. Aqueous suspensions of 1-GO and 2-GO are stable and can be kept for a long time. After confirming their good biocompatibility by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the 1-GO and 2-GO hybrids were endocytosed by HeLa cells for in vitro Raman imaging. It was found that 1-GO presents better Raman imaging than 2-GO. When a fluorescent guest molecule, bipyridinium derivative 3, was added into the suspensions of the hybrids, the suspensions of 1-GO and 2-GO were as stable as the original. The suspensions of the inclusion complexes (1-GO[DOT OPERATOR]3 and 2-GO[DOT OPERATOR]3) formed from 1-GO and 2-GO with 3 can also be endocytosed by HeLa cells to enable in vitro fluorescence imaging to be performed. It was found that 1-GO[DOT OPERATOR]3 performs better than 2-GO[DOT OPERATOR]3. The current research has determined the capacities of pillararene-modified GO for combined bioimaging, which paves the way for using these biocompatible materials towards dual-mode diagnostics

    N

    No full text

    Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water

    No full text
    Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots’ structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals

    Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water

    No full text
    Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots’ structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals
    corecore