17 research outputs found

    CRYPTOCHROMES promote daily protein homeostasis.

    Get PDF
    The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation

    Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology

    Get PDF
    Abstract: Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl− through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes

    Roles of Sulfur Sources in the Formation of Alloyed Cu<sub>2–<i>x</i></sub>S<sub><i>y</i></sub>Se<sub>1–<i>y</i></sub> Nanocrystals: Controllable Synthesis and Tuning of Plasmonic Resonance Absorption

    No full text
    Ternary alloyed Cu<sub>2–<i>x</i></sub>S<sub><i>y</i></sub>Se<sub>1–<i>y</i></sub> nanocrystals (NCs) were synthesized by using a simple and phosphine-free colloidal approach, in which sulfur powder and 1-dodecanethiol (DDT) were used as sulfur sources. In both cases, the crystal phase transformed from cubic berzelianite to monoclinic djurleite structure together with the morphology evolution from quasi-triangular to spherical or discal with an increase of sulfur content. Accordingly, the near-infrared (NIR) localized surface plasmon resonance (LSPR) absorption of the as-obtained sulfur-rich NCs exhibited obvious red-shift of wavelength and widening of absorption width. When the sulfur powder was chosen as sulfur sources, the LSPR wavelength of the as-obtained alloyed Cu<sub>2–<i>x</i></sub>S<sub><i>y</i></sub>Se<sub>1–<i>y</i></sub> NCs could be tuned from 975 to 1230 nm with a decrease of selenium content in the NCs. In contrast, the region of the red-shift could be up to 1250 nm for the alloyed NCs synthesized by incorporation of different DDT dosage into the reaction system. The different sulfur sources and the electron donating effects of the DDT as a ligand played an important role in the LSPR absorption tuning. This deduction could be testified by the post-treating the quasi-triangular Cu<sub>2–<i>x</i></sub>Se NCs with DDT under different temperatures and over different reaction time, which exhibited a red-shift of LSPR wavelength up to 450 nm due to coordination of DDT to Cu atoms on the NC surface while incorporating some sulfur anions into the lattice. This study offers a convenient tool for tuning the LSPR absorption of copper chalcogenide NCs and makes them for application in biological and optoelectronic fields

    CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping

    No full text
    Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1Ύ/Δ activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational
    corecore