85 research outputs found

    Clonal diversity and detection of carbapenem resistance encoding genes among multidrug-resistant Acinetobacter baumannii isolates recovered from patients and environment in two intensive care units in a Moroccan hospital

    Get PDF
    Background Carbapenem-resistant Acinetobacter baumannii has recently been defined by the World Health Organization as a critical pathogen. The aim of this study was to compare clonal diversity and carbapenemase-encoding genes of A. baumannii isolates collected from colonized or infected patients and hospital environment in two intensive care units (ICUs) in Morocco. Methods The patient and environmental sampling was carried out in the medical and surgical ICUs of Mohammed V Military teaching hospital from March to August 2015. All A. baumannii isolates recovered from clinical and environmental samples, were identified using routine microbiological techniques and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility testing was performed using disc diffusion method. The carbapenemase-encoding genes were screened for by PCR. Clonal relatedness was analyzed by digestion of the DNA with low frequency restriction enzymes and pulsed field gel electrophoresis (PFGE) and the multi locus sequence typing (MLST) was performed on two selected isolates from two major pulsotypes. Results A total of 83 multidrug-resistant A. baumannii isolates were collected: 47 clinical isolates and 36 environmental isolates. All isolates were positive for the bla OXA51-like and bla OXA23-like genes. The coexistence of bla NDM-1 /bla OXA-23-like and bla OXA 24-like /bla OXA-23-like were detected in 27 (32.5%) and 2 (2.4%) of A. baumannii isolates, respectively. The environmental samples and the fecally-colonized patients were significantly identified (p < 0.05) as the most common sites of isolation of NDM-1-harboring isolates. PFGE grouped all isolates into 9 distinct clusters with two major groups (0007 and 0008) containing up to 59% of the isolates. The pulsotype 0008 corresponds to sequence type (ST) 195 while pulsotype 0007 corresponds to ST 1089.The genetic similarity between the clinical and environmental isolates was observed in 80/83 = 96.4% of all isolates, belonging to 7 pulsotypes. Conclusion This study shows that the clonal spread of environmental A. baumannii isolates is related to that of clinical isolates recovered from colonized or infected patients, being both associated with a high prevalence of the bla OXA23-like and bla NDM-1genes. These findings emphasize the need for prioritizing the bio-cleaning of the hospital environment to control and prevent the dissemination of A. baumannii clonal lineages

    Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies

    Get PDF
    The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O 2) or normoxia (21% O2) for 1-72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminexℱ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases. © 2013 Ziraldo et al

    Evidence for Extended Hydrogen-Poor CSM in the Three-Peaked Light Curve of Stripped Envelope Ib Supernova

    Full text link
    We present multi-band ATLAS photometry for SN 2019tsf, a stripped-envelope Type Ib supernova (SESN). The SN shows a triple-peaked light curve and a late (re-)brightening, making it unique among stripped-envelope systems. The re-brightening observations represent the latest photometric measurements of a multi-peaked Type Ib SN to date. As late-time photometry and spectroscopy suggest no hydrogen, the potential circumstellar material (CSM) must be H-poor. Moreover, late (>150 days) spectra show no signs of narrow emission lines, further disfavouring CSM interaction. On the contrary, an extended CSM structure is seen through a follow-up radio campaign with Karl G. Jansky Very Large Array (VLA), indicating a source of bright optically thick radio emission at late times, which is highly unusual among H-poor SESNe. We attribute this phenomenology to an interaction of the supernova ejecta with spherically-asymmetric CSM, potentially disk-like, and we present several models that can potentially explain the origin of this rare Type Ib supernova. The warped disc model paints a novel picture, where the tertiary companion perturbs the progenitors CSM, that can explain the multi-peaked light curves of SNe, and here we apply it to SN 2019tsf. This SN 2019tsf is likely a member of a new sub-class of Type Ib SNe and among the recently discovered class of SNe that undergo mass transfer at the moment of explosionComment: 23 pages, Comments are welcome, Submitted to Ap

    SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features

    Get PDF
    We present panchromatic observations and modeling of the Calcium-rich supernova (SN) 2019ehk in the star-forming galaxy M100 (d ≈ 16.2 Mpc) starting 10 hr after explosion and continuing for ~300 days. SN 2019ehk shows a double-peaked optical light curve peaking at t = 3 and 15 days. The first peak is coincident with luminous, rapidly decaying Swift-XRT–discovered X-ray emission (L_x ≈ 10⁎Âč erg s⁻Âč at 3 days; L_x ∝ t⁻³), and a Shane/Kast spectral detection of narrow Hα and He II emission lines (v ≈ 500 km s⁻Âč) originating from pre-existent circumstellar material (CSM). We attribute this phenomenology to radiation from shock interaction with extended, dense material surrounding the progenitor star at r (0.1–1) × 10Âč⁷ cm. The photometric and spectroscopic properties during the second light-curve peak are consistent with those of Ca-rich transients (rise-time of t_r = 13.4 ± 0.210 days and a peak B-band magnitude of M_B = −15.1 ± 0.200 mag). We find that SN 2019ehk synthesized (3.1 ± 0.11) × 10⁻ÂČ M_⊙ of ⁔⁶Ni and ejected M_(ej) = (0.72 ± 0.040) M⊙ total with a kinetic energy E_k = (1.8 ± 0.10) × 10⁔⁰ erg. Finally, deep HST pre-explosion imaging at the SN site constrains the parameter space of viable stellar progenitors to massive stars in the lowest mass bin (~10 M_⊙) in binaries that lost most of their He envelope or white dwarfs (WDs). The explosion and environment properties of SN 2019ehk further restrict the potential WD progenitor systems to low-mass hybrid HeCO WD+CO WD binaries
    • 

    corecore