26 research outputs found

    Notch-mediated generation of monocyte-derived Langerhans cells: Phenotype and function

    No full text
    Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin/CD207 makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here we present such a model and demonstrate that monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), transforming growth factor (TGF)-β1 and the Notch ligand Delta-like 4 (DLL4) differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA-sequencing (RNA-seq) of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors and enhanced expression of the antigen-presenting machinery. On protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro-generated moLCs represent an interesting tool to screen LC-based vaccines in the future

    Indirect evidence that maternal microchimerism in cord blood mediates a graft-versus-leukemia effect in cord blood transplantation

    No full text
    During pregnancy women can develop B- and T-cell immunity against the inherited paternal antigens (IPAs) of the fetus, such as HLA, peptides of minor histocompatibilty antigens, and possibly onco-fetal antigens. The biological and pathological role of these pregnancy-induced immunological events is only understood in part. However, anti-IPA immunity in the mother persists for many decades after delivery and may reduce relapse in offspring with leukemia after HLA-haploidentical transplantation of maternal hematopoietic stem cells (HSC). We hypothesized that maternal anti-IPA immune elements cross the placenta and might confer a potent graft-versus-leukemia effect when cord blood (CB) is used in unrelated HSC transplantation. In a retrospective study of single-unit CB recipients with all grafts provided by the New York Blood Center, we show that patients with acute myeloid or lymphoblastic leukemia (n = 845) who shared one or more HLA-A, -B, or -DRB1 antigens with their CB donor's IPAs had a significant decrease in leukemic relapse posttransplantation [hazard ratio (HR) = 0.38, P < 0.001] compared with those that did not. Remarkably, relapse reduction in patients receiving CB with one HLA mismatch (HR = 0.15, P < 0.001) was not associated with an increased risk of severe acute graft-versus-host disease (HR = 1.43, P = 0.730). Our findings may explain the unexpected low relapse rate after CB transplantation, open new avenues in the study of leukemic relapse after HSC transplantation (possibly of malignancies in general), and have practical implications for CB unit selection
    corecore