358 research outputs found

    Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X == Fe, Ni, and Co) half-Heusler compounds

    Full text link
    The structural, electronic and magnetic properties of half-Heusler compounds XVSb (X == Fe, Co and Ni) are investigated by using the density functional theory with generalized gradient approximation (GGA), and Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential approximation. It is found that the half-metallic gaps are generally reasonably widened by mBJ as compared to the GGA approximation. The magnetic proprieties of XVSb (X == Fe, Co and Ni) are well defined within mBJ with an exact integer value of magnetic moment. The band gaps given by TB-mBJ are in good agreement with the available theoretical data. The FeVSb exhibits a semiconductor nature. The CoVSb and NiVSb present half-metallic behaviour with total magnetic moment of 1μB1\mu_\text{B} and 2μB2\mu_\text{B} in good agreement with Slater-Pauling rule. These alloys seem to be a potential candidate of spintronic devices.Comment: 9 pages, 5 figure

    Vanishing Loss Effect on the Effective ac Conductivity behavior for 2D Composite Metal-Dielectric Films At The Percolation Threshold

    Full text link
    We study the imaginary part of the effective acac conductivity as well as its distribution probability for vanishing losses in 2D composites. This investigation showed that the effective medium theory provides only informations about the average conductivity, while its fluctuations which correspond to the field energy in this limit are neglected by this theory.Comment: 6 pages, 2 figures, submitted to Phys.Rev.

    Confinement in a Double Barrier Structure in the Presence of an Electric Field

    Full text link
    The effect of electric field on the electron resonant tunnelling into a double barrier structure is studied. We show for particular field strengths an increase of the tunnelling time which leads us to explain the Stark-ladder localization and Bloch oscillations in superlattices and to discuss the quenching of luminescence in multiple quantum wells.Comment: Latex 7 pages with 4 figures. The figures are included in this version and the figure caption is slightly modifie

    Monte Carlo simulation of the transmission of measles: Beyond the mass action principle

    Full text link
    We present a Monte Carlo simulation of the transmission of measles within a population sample during its growing and equilibrium states by introducing two different vaccination schedules of one and two doses. We study the effects of the contact rate per unit time ξ\xi as well as the initial conditions on the persistence of the disease. We found a weak effect of the initial conditions while the disease persists when ξ\xi lies in the range 1/L-10/L (LL being the latent period). Further comparison with existing data, prediction of future epidemics and other estimations of the vaccination efficiency are provided. Finally, we compare our approach to the models using the mass action principle in the first and another epidemic region and found the incidence independent of the number of susceptibles after the epidemic peak while it strongly fluctuates in its growing region. This method can be easily applied to other human, animals and vegetable diseases and includes more complicated parameters.Comment: 15 pages, 4 figures, 1 table, Submitted to Phys.Rev.

    The Molecular Background Associated with the Progression of Hepatitis C to Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a major health problem worldwide. The DNA PM of cancer-related genes plays an important role in the development and progression of HCC. The data reported in our studies provide evidence that PM of p73, p14, and O6-MGMT is associated with HCC, whereas PM of the APC gene is more common in chronic hepatitis (CH) cases. Thus, it could be used as a maker for early detection of HCV-induced chronic active hepatitis. A panel of four genes APC, p73, p14, and O6-MGMT independently affected the classification of cases into HCC and CH with accuracy (89.9%), sensitivity (83.9%), and specificity (94.7%). Also, the detection of PM of APC, FHIT, p15, p16, and E-cadherin in peripheral blood of HCV-infected patients is a highly sensitive and specific. Therefore, blood could be used as efficiently as tissue biopsies to assess PM of different genes. This could help in the follow-up of CH patients and early detection of HCC. We did not observe a significant difference in the methylation status according to the virus type HBV versus HCV. So, plasma DNA is a reliable resource for methylation studies in the future, irrespective of the type of hepatitis infection
    corecore