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Abstract

A simple Kronig-Penney model for 1D mesoscopic systems with � peak potentials is used

to study numerically the inuence of a constant electric �eld on the conductance uctuations

and distribution at the transition. We found that the conductance probability distribution has

a system-size independent form with large uctuations in good agreement with the previous

works in 2D and 3D systems.
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1 Introduction

During the last two decades several works have been devoted to understand the transport

properties in mesoscopic systems [1-8]. Experiments performed in such systems showed that the

conductance g is not a self-averaged quantity [3] and then uctuates as the function of the Fermi

energy, chemical potential and the sample size. In the metallic regime experimental [2-4] and

theoretical [5-8] studies indicated that the conductance uctuations are of order of e2=h and are

universal (i.e. independent of the system size or the amount of disorder).

In the localized (insulating) regime, the conductance exhibits strong uctuations which tend

to diverge for large system sizes [9,10]. At critical point of the metal-insulator transition (MIT),

large uctuations were predicted analytically for d = 2 + " (" � 1) [11,12] but not detected

numerically by Markos and Kramer in 2D and 3D systems [13,14]. They found that the large

conductance uctuations are not the general feature of the metal-insulator transition. It was

also found that the variance of log(g) is of order of its mean value and the standard deviation

of g is also � < g > [15]

Since the conductance does not obey to the central limit theorem [1] not only its mean

value but its whole probability distribution has to be studied. Numerical results in 2D and 3D

disordered systems showed that the conductance is gaussian distributed in the metallic regime

[16] while for strongly localized systems (insulating regime) a log-normal distribution was found

[16]. The correct form of the probability distribution at the transition is not well known. In

such regime, it was proved that the conductance distribution is independent of the microscopic

details of the model (determined by the distribution of the disorder), of the system size and of the

position of the critical point which separates the metallic and the localized regime in the space

of external parameters (energy, disorder). This universality of the conductance distribution was

studied and con�rmed for 2D and 3D models [13-14]. The system-size invariance of P(g) at the

critical points of the MIT was con�rmed for 3D and 4D orthogonal systems [17, 18]. It was also

found that that the critical distribution depends on the dimension [15], the symmetry of the

system [15,17] and on the boundary conditions [19].

The electric �eld was shown to delocalize the electronic states in 1D disordered systems

(where all the states are localized) [20, 21]. In a previous work, we have shown that the Anderson

transition may occur for strong �elds [22].

In this work, we use the Kronig-Penney model to test the size-independent probability distri-

bution of the conductance at the transition in disordered mesoscopic chain under the inuence

of an electric �eld.

2 Model description

We consider a Kronig-Penney model applied to a 1D system of equally spaced potential

V(x) with random strengths under a constant electric �eld F. The corresponding Schrodinger
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equation can be read: (
� d2

dx2
+
X
n

�n�(x � n)� eFx

)
	(x) = E	(x) (1)

Here 	(x) is the single particle wavefunction at x, �n the potential strength of the n� th site

and E the single particle energy in units of �h2=2m with m the electronic e�ective mass. The

electronic charge e and the lattice parameter a are taken here for simplicity to be unity. The

chain length is identical to the number of scatterers (L = N). The two ends of the system

are assumed to be connected ohmically to ideal leads (where the electron moves freely) and

maintained at a constant potential di�erence V = FL. The potential strength �n is uniformly

distributed between �W=2 and W=2 (W being the degree of disorder).

The exact solution of the equation (1) is Airy function-like. In order to reduce the com-

putational time consuming we use the so-called ladder approximation which is valid only for

weak �elds [20, 21]. For strong �elds, we use the multistep function approximation [23] which

is very accurate and use plane waves instead of the Airy functions. The second order di�er-

ential equation (1) can be mapped by means of the Poincar�e map representation in the ladder

approximation [20]

	n+1 =

�
cos(kn+1) +

kn sin(kn+1)

kn+1 sin(kn)
cos(kn) + �n

sin(kn+1)

kn+1

�
	n � kn sin(kn+1)

kn+1 sin(kn)
	n�1 (2)

where 	n is the value of the wavefunction at site n and kn =
p
E + Fn is the electron wave

number at the site n. The solution of equation (2) is carried out iteratively by taking the two

initial wave functions at sites 1 and 2 : 	1 = exp(�ik) and 	2 = exp(�2ik). We consider here

an electron having a wave number k incident at site N + 3 from the right (by taking the chain

length L = N , i.e. N + 1 scatterers ). The transmission coe�cient (T ) reads

T =
k0
kL

j1� exp(�2ikL)j2
j	N+2 �	N+3exp(�ikL)j2 (3)

where k0 =
p
E and kL =

p
E + FN .

The dimensionless 4-probe conductance (g = G
e2=h ) can be obtained from the transmission

coe�cient T via the Landauer formula for 1D systems [24]:

g =
2T

1� T
(4)

where the factor two arises from the two possible states of the electron spin.

3 Results and discussion

In this section we discuss the numerical results of the conductance uctuations and dis-

tribution at the transition regime. In a previous work [22], we have shown that the real metal-

insulator transition does not occur at E � V as believed from the results of Mato and Caro
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[25] but this regime can be obtained for strong �elds. To obtain the probability distribution

of the conductance, we construct a statistical ensemble of 104samples which di�er only in the

realization of the disorder. The electric �eld has been shown to delocalize the electronic states

in 1D disordered systems where the wave function becomes power-law decaying [20, 21], while

for su�ciently large �eld strengths, the eigenstates become extended [22]. In Figure 1, we show

the variance of Ln(g) as a function of the applied electric �eld (for large �eld strengths F > 1).

The conductance uctuations has two pronounced peaks for F = 1:465 and F = 3. These

large uctuations are a sign of localized states even for large �eld strengths. We expect that

the metal-insulator transition may occur at these regions. To check the nature of the regime,

we show in Figure 2 the probability distribution of Ln(g) (Fig.2a) and g (Fig.2b) for di�erent

sizes of the system (L = 500; 700; 800 and 900) and for F = 3. The conductance distribution is

neither normal nor lognormal. The L-independence of the conductance distribution observed for

2D and 3D systems [13-15, 18] is con�rmed here. This behaviour is not observed in the metallic

and insulating regime (see Fig.3) where the conductance distribution depends on the size of the

system. The long tail of the distribution in Fig.1 is representative for large uctuations in good

agreement with the results of Shapiro [11] and Shapiro and Cohen [12] for such regime. The

distribution of g in Fig.2b has a similar shape as found recently at the crossover region between

the metallic and the insulating regime in disordered quasi one-dimensional wire [26]. For an

electric �eld strength corresponding to the �rst peak in Fig.1, the conductance distribution has

a size dependent form (not shown). We can conclude that the MIT regime occur at F = 3 for

E = 0:4 and W = 0:25. We can also observe that this regime is characterized by very large

conductances < g >' 58 (Fig.4 and Fig.2) This was not observed in the metallic regime where

the mean conductance is small < g >' 0:4 [22]. We presented in Table I mean value of log g

and its variance. We note clearly that Var(ln(g)) is not of order of ln(g) which is typical for

the localized states as found for 3D and 4D systems [15]. This shows that in our system the

extended states dominates due to electric �eld.

We can also observe that P (g) has a hole at small g in agreement with the analytical result

in the " expansion [11, 12] and with the numerical results for 2D [27]and 3D systems [18, 28] .

4 Conclusion

We have used the Kronig-Penney model in a simple1D disordered system in the presence

of an electric �eld to examine the conductance uctuations and the size-independence of its dis-

tribution at the metal-insulator transition. The results are in good agreement with the previous

works in 2D and 3D systems for other models [13-14] for the metal-insulator transition . It is

important to study the universality of the conductance distribution at the transition in a system

of �nite width potentials where the conductance uctuations are less important in comparison

to the present model[22] and to �nd the critical points of the transition in the (energy-disorder-
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electric �eld) space and for di�erent kinds of disorder. These problems will be the subject of a

forthcoming paper.
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Table I Mean conductance < Ln(g) > and its variance for di�erent system size L.

L < Ln(g) > V ar(Ln(g))
500 3.9557 0.20548
600 3.9314 0.20474
700 3.9596 0.21149
800 3.9632 0.21717
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Figure Captions

Fig.1 Variance of Ln(g) versus applied electric �eld for L = 500; E = 0:4 and W = 0:25:

Fig.2a Probability distribution of Ln(g) for F = 3, E = 0:4 and W = 0:25 and di�erent system

sizes ( L = 500; 700; 800 and 900 ) compared with a gaussian with same mean and variance

(dashed curve).

Fig2b Distribution of g for the same parameters as in Fig1a.

Fig.3 Distribution of �Ln(g) in the insulting regime for F = 0; E = 5 andW = 2 and di�erent

system sizes (L = 500; 700 and 800) from left to right compared with a gaussian with same mean

and variance (dashed curves).

Fig.4 Mean conductance < Ln(g) > versus applied electric �eld for the same parameters as in

Fig.1.
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