529 research outputs found

    Integer Quantum Hall Transition and Random SU(N) Rotation

    Full text link
    We reduce the problem of integer quantum Hall transition to a random rotation of an N-dimensional vector by an su(N) algebra, where only N specially selected generators of the algebra are nonzero. The group-theoretical structure revealed in this way allows us to obtain a new series of conservation laws for the equation describing the electron density evolution in the lowest Landau level. The resulting formalism is particularly well suited to numerical simulations, allowing us to obtain the critical exponent \nu numerically in a very simple way. We also suggest that if the number of nonzero generators is much less than N, the same model, in a certain intermediate time interval, describes percolating properties of a random incompressible steady two-dimensional flow. In other words, quantum Hall transition in a very smooth random potential inherits certain properties of percolation.Comment: 4 pages, 1 figur

    Beta-gamma systems and the deformations of the BRST operator

    Full text link
    We describe the relation between simple logarithmic CFTs associated with closed and open strings, and their "infinite metric" limits, corresponding to the beta-gamma systems. This relation is studied on the level of the BRST complex: we show that the consideration of metric as a perturbation leads to a certain deformation of the algebraic operations of the Lian-Zuckerman type on the vertex algebra, associated with the beta-gamma systems. The Maurer-Cartan equations corresponding to this deformed structure in the quasiclassical approximation lead to the nonlinear field equations. As an explicit example, we demonstrate, that using this construction, Yang-Mills equations can be derived. This gives rise to a nontrivial relation between the Courant-Dorfman algebroid and homotopy algebras emerging from the gauge theory. We also discuss possible algebraic approach to the study of beta-functions in sigma-models.Comment: LaTeX2e, 15 pages; minor revision, typos corrected, Journal of Physics A, in pres

    On the Quantum Inverse Problem for the Closed Toda Chain

    Full text link
    We reconstruct the canonical operators pi,qip_i,q_i of the quantum closed Toda chain in terms of Sklyanin's separated variables.Comment: 16 page

    The matrix realization of affine Jacobi varieties and the extended Lotka-Volterra lattice

    Full text link
    We study completely integrable Hamiltonian systems whose monodromy matrices are related to the representatives for the set of gauge equivalence classes MF\boldsymbol{\mathcal{M}}_F of polynomial matrices. Let XX be the algebraic curve given by the common characteristic equation for MF\boldsymbol{\mathcal{M}}_F. We construct the isomorphism from the set of representatives to an affine part of the Jacobi variety of XX. This variety corresponds to the invariant manifold of the system, where the Hamiltonian flow is linearized. As the application, we discuss the algebraic completely integrability of the extended Lotka-Volterra lattice with a periodic boundary condition.Comment: Revised version, 26 page

    Drivers and outcomes of work alienation: reviving a concept

    Get PDF
    This article sheds new light on an understudied construct in mainstream management theory, namely, work alienation. This is an important area of study because previous research indicates that work alienation is associated with important individual and organizational outcomes. We tested four antecedents of work alienation: decision-making autonomy, task variety, task identity, and social support. Moreover, we examined two outcomes of alienation: deviance and performance, the former measured 1 year after the independent variables were measured, and the latter as rated by supervisors. We present evidence from a sample of 283 employees employed at a construction and consultancy organization in the United Kingdom. The results supported the majority of our hypotheses, indicating that alienation is a worthy concept of exploration in the management sciences

    Bosonization of current-current interactions

    Get PDF
    We discuss a generalization of the conventional bosonization procedure to the case of current-current interactions which get their natural representation in terms of current instead of fermion number density operators. A consistent bosonization procedure requires a geometrical quantization of the hamiltonian action of WW_\infty on its coadjoint orbits. An integrable example of a nontrivial realization of this symmetry is presented by the Calogero-Sutherland model. For an illustrative nonintegrable example we consider transverse gauge interactions and calculate the fermion Green function.Comment: 15 pages, TeX, C Version 3.0, Princeton preprin

    Particle-hole symmetry and transport properties of the flux state in underdoped cuprates

    Full text link
    Transport properties are studied for the flux state with the gauge flux ϕ\phi per plaquett, which may model the underdoped cuprates, with the emphasis on the particle-hole and parity/chiral symmetries.This model is reduced to the Dirac fermions in (2+1)D with a mass gap introduced by the antiferromagnetic (AF) long range order and/or the stripe formation. Without the mass gap, the Hall constant RHR_H and the thermopower SS obey two-parameter scaling laws, and show the strong temperature dependence due to the recovery of the particle-hole symmetry at high temperature. The xx-dependences of σxx(x)\sigma_{xx} (\propto \sqrt{x}) and σxy\sigma_{xy} (independent of xx) are in a sharp contradiction with the experiments. (Here xx is the hole concentration.) Therefore there is no signature of the particle-hole symmetry or the massless Dirac fermions in the underdoped cuprates even above the Neel temperature TNT_N. With the mass gap introduced by the AF order, there occurs the parity anomaly for each of the Dirac fermions. However the contributions from different valleys and spins cancel with each other to result in no spontaneous Hall effect even if the time-reversal symmetry is broken with ϕπ\phi \ne \pi. The effects of the stripes are also studied. The diagonal and vertical (horizontal) stripes have quite different influence on the transport properties. The suppression of RHR_H occurs at low temperature only when (i) both the AF order and the vertical (horizontal) stripe coexist, and (ii) the average over the in-plane direction is taken. Discussions on the recent experiments are given from the viewpoint of these theoretical results.Comment: RevTeX, 14 pages, 11 figure

    Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans

    Get PDF
    Rabies kills many people throughout the developing world every year. The murine monoclonal antibody (mAb) 62-71-3 was recently identified for its potential application in rabies postexposure prophylaxis (PEP). The purpose here was to establish a plant-based production system for a chimeric mouse-human version of mAb 62-71-3, to characterize the recombinant antibody and investigate at a molecular level its interaction with rabies virus glycoprotein. Chimeric 62-71-3 was successfully expressed in Nicotiana benthamiana. Glycosylation was analyzed by mass spectroscopy; functionality was confirmed by antigen ELISA, as well as rabies and pseudotype virus neutralization. Epitope characterization was performed using pseudotype virus expressing mutagenized rabies glycoproteins. Purified mAb demonstrated potent viral neutralization at 500 IU/mg. A critical role for antigenic site I of the glycoprotein, as well as for two specific amino acid residues (K226 and G229) within site I, was identified with regard to mAb 62-71-3 neutralization. Pseudotype viruses expressing glycoprotein from lyssaviruses known not to be neutralized by this antibody were the controls. The results provide the molecular rationale for developing 62-71-3 mAb for rabies PEP; they also establish the basis for developing an inexpensive plant-based antibody product to benefit low-income families in developing countries.—Both, L., van Dolleweerd, C., Wright, E., Banyard, A. C., Bulmer-Thomas, B., Selden, D., Altmann, F., Fooks, A. R., Ma, J. K.-C. Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans
    corecore