1,154 research outputs found

    Specific Heat of a Fractional Quantum Hall System

    Get PDF
    Using a time-resolved phonon absorption technique, we have measured the specific heat of a two-dimensional electron system in the fractional quantum Hall effect regime. For filling factors ν=5/3,4/3,2/3,3/5,4/7,2/5\nu = 5/3, 4/3, 2/3, 3/5, 4/7, 2/5 and 1/3 the specific heat displays a strong exponential temperature dependence in agreement with excitations across a quasi-particle gap. At filling factor ν=1/2\nu = 1/2 we were able to measure the specific heat of a composite fermion system for the first time. The observed linear temperature dependence on temperature down to T=0.14T = 0.14 K agrees well with early predictions for a Fermi liquid of composite fermions.Comment: 4 pages, 4 figures (version is 1. resubmission: Added a paragraph to include the problems which arise by the weak temperature dependence at \nu = 1/2, updated affiliation

    Uplift of Central Mongolia Recorded in Vesicular Basalts

    Get PDF
    Epeirogenic histories of highland areas have confounded earth scientists for decades, as there are few sedimentary records of paleoelevation in eroding highlands. For example, mechanisms that have led to the high elevations of the Hangay Mountains in central Mongolia are not clear, nor is it well understood how the epeirogenic history of central Mongolia is connected to that of a broader region of high elevation that extends hundreds of kilometers to the north, east, and west. However, preserved basaltic lava flows record paleoelevation in the size distributions of vesicles at the tops and bottoms of flow units. As an initial step toward better understanding the tectonics of this part of Asia, we collected and analyzed samples from several basaltic lava flows from throughout the Hangay Mountains to use as a paleoaltimeter on the basis of lava flow vesicularity. Samples were dated and scanned with x-ray tomography to provide quantitative information regarding their internal vesicle size distributions. This yielded the pressure difference between the top and bottom of each flow for paleoelevation calculation. Results suggest that the Hangay Mountains experienced uplift of more than 1 km sometime during the past 9 m.yr. The magnitude of uplift of the Hangay, in addition to the composition of its lavas, the geomorphology of the region, its drainage pattern history, and other proxies, bears on possible mechanisms for uplift of this part of central Asia

    Dissipative Quantum Hall Effect in Graphene near the Dirac Point

    Get PDF
    We report on the unusual nature of nu=0 state in the integer quantum Hall effect (QHE) in graphene and show that electron transport in this regime is dominated by counter-propagating edge states. Such states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large longitudinal resistivity rho_xx > h/e^2, in striking contrast to rho_xx behavior in the standard QHE. The nu=0 state in graphene is also predicted to exhibit pronounced fluctuations in rho_xy and rho_xx and a smeared zero Hall plateau in sigma_xy, in agreement with experiment. The existence of gapless edge states puts stringent constraints on possible theoretical models of the nu=0 state.Comment: 4 pgs, 4 fg

    Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field

    Get PDF
    We report on transport and capacitance measurements of graphene devices in magnetic fields up to 30 T. In both techniques, we observe the full splitting of Landau levels and we employ tilted field experiments to address the origin of the observed broken symmetry states. In the lowest energy level, the spin degeneracy is removed at filling factors ν=±1\nu=\pm1 and we observe an enhanced energy gap. In the higher levels, the valley degeneracy is removed at odd filling factors while spin polarized states are formed at even ν\nu. Although the observation of odd filling factors in the higher levels points towards the spontaneous origin of the splitting, we find that the main contribution to the gap at ν=4,8\nu= -4,-8, and 12-12 is due to the Zeeman energy.Comment: 5 pages, 4 figure

    Long-Term Efficacy and Safety of Chronic Globus Pallidus Internus Stimulation in Different Types of Primary Dystonia

    Get PDF
    Background: Deep brain stimulation (DBS) of the globus pallidus internus (GPi) offers a very promising therapy for medically intractable dystonia. However, little is known about the long-term benefit and safety of this procedure. We therefore performed a retrospective long-term analysis of 18 patients (age 12-78 years) suffering from primary generalized (9), segmental (6) or focal (3) dystonia (minimum follow-up: 36 months). Methods: Outcome was assessed using the Burke-Fahn-Marsden (BFM) scores (generalized dystonia) and the Tsui score (focal/segmental dystonia). Follow-up ranged between 37 and 90 months (mean 60 months). Results: Patients with generalized dystonia showed a mean improvement in the BFM movement score of 39.4% (range 0 68.8%), 42.5% (range -16.0 to 81.3%) and 46.8% (range-2.7 to 83.1%) at the 3- and 12-month, and long-term follow-up, respectively. In focal/ segmental dystonia, the mean reduction in the Tsui score was 36.8% (range 0-100%), 65.1% (range 16.7-100%) and 59.8% (range 16.7-100%) at the 3- and 12-month, and long-term follow-up, respectively. Local infections were noted in 2 patients and hardware problems (electrode dislocation and breakage of the extension cable) in 1 patient. Conclusion: Our data showed Gpi-DBS to offer a very effective and safe therapy for different kinds of primary dystonia, with a significant long-term benefit in the majority of cases. Copyright (c) 2008 S. Karger AG, Base

    Transport and thermoelectric properties of the LaAlO3_3/SrTiO3_3 interface

    Get PDF
    The transport and thermoelectric properties of the interface between SrTiO3_3 and a 26-monolayer thick LaAlO3_3-layer grown at high oxygen-pressure have been investigated at temperatures from 4.2 K to 100 K and in magnetic fields up to 18 T. For T>T> 4.2 K, two different electron-like charge carriers originating from two electron channels which contribute to transport are observed. We probe the contributions of a degenerate and a non-degenerate band to the thermoelectric power and develop a consistent model to describe the temperature dependence of the thermoelectric tensor. Anomalies in the data point to an additional magnetic field dependent scattering.Comment: 7 pages, 4 figure

    Scaling of the quantum-Hall plateau-plateau transition in graphene

    Get PDF
    The temperature dependence of the magneto-conductivity in graphene shows that the widths of the longitudinal conductivity peaks, for the N=1 Landau level of electrons and holes, display a power-law behavior following ΔνTκ\Delta \nu \propto T^{\kappa} with a scaling exponent κ=0.37±0.05\kappa = 0.37\pm0.05. Similarly the maximum derivative of the quantum Hall plateau transitions (dσxy/dν)max(d\sigma_{xy}/d\nu)^{max} scales as TκT^{-\kappa} with a scaling exponent κ=0.41±0.04\kappa = 0.41\pm0.04 for both the first and second electron and hole Landau level. These results confirm the universality of a critical scaling exponent. In the zeroth Landau level, however, the width and derivative are essentially temperature independent, which we explain by a temperature independent intrinsic length that obscures the expected universal scaling behavior of the zeroth Landau level

    Gap opening in the zeroth Landau level of graphene

    Get PDF
    We have measured a strong increase of the low-temperature resistivity ρxx\rho_{xx} and a zero-value plateau in the Hall conductivity σxy\sigma_{xy} at the charge neutrality point in graphene subjected to high magnetic fields up to 30 T. We explain our results by a simple model involving a field dependent splitting of the lowest Landau level of the order of a few Kelvin, as extracted from activated transport measurements. The model reproduces both the increase in ρxx\rho_{xx} and the anomalous ν=0\nu=0 plateau in σxy\sigma_{xy} in terms of coexisting electrons and holes in the same spin-split zero-energy Landau level.Comment: 4 pages, 3 figure

    Transport Gap in Suspended Bilayer Graphene at Zero Magnetic Field

    Get PDF
    We report a change of three orders of magnitudes in the resistance of a suspended bilayer graphene flake which varies from a few kΩ\Omegas in the high carrier density regime to several MΩ\Omegas around the charge neutrality point (CNP). The corresponding transport gap is 8 meV at 0.3 K. The sequence of appearing quantum Hall plateaus at filling factor ν=2\nu=2 followed by ν=1\nu=1 suggests that the observed gap is caused by the symmetry breaking of the lowest Landau level. Investigation of the gap in a tilted magnetic field indicates that the resistance at the CNP shows a weak linear decrease for increasing total magnetic field. Those observations are in agreement with a spontaneous valley splitting at zero magnetic field followed by splitting of the spins originating from different valleys with increasing magnetic field. Both, the transport gap and BB field response point toward spin polarized layer antiferromagnetic state as a ground state in the bilayer graphene sample. The observed non-trivial dependence of the gap value on the normal component of BB suggests possible exchange mechanisms in the system.Comment: 8 pages, 5 figure
    corecore