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D issip ative  Q uantum  H all Effect in G raphene near th e  D irac P oint
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We report on the unusual nature of v =  0 state in the integer quantum Hall effect (QHE) in 
graphene and show that electron transport in this regime is dominated by counter-propagating 
edge states. Such states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large 
longitudinal resistivity pxx > h /e 2, in striking contrast to pxx behavior in the standard QHE. The 
v =  0 state in graphene is also predicted to exhibit pronounced fluctuations in pxy and pxx and 
a smeared zero Hall plateau in axy, in agreement with experiment. The existence of gapless edge 
states puts stringent constraints on possible theoretical models of the v =  0 state.

E lectronic properties of graphene has a ttrac ted  signifi
can t interest, especially since an anom alous integer quan
tu m  Hall effect (QHE) was found in this m aterial [1, 2]. 
G raphene features QHE plateaus a t half-integer values 
of Hall conductivity  a xy =  (± 1 /2 , ± 3 /2 , ...)4e2/ h  where 
the factor 4 takes into account double valley and dou
ble spin degeneracy. The “half-integer” QHE is now well 
understood  as arising due to  unusual charge carriers in 
graphene, which mimic massless relativistic Dirac p ar
ticles [3]. Recent theoretical efforts have focused on the 
properties of spin- and valley-split QHE a t low filling fac
to rs [4, 5, 6, 7, 8, 9] and fractional QHE [10]. Novel sta tes 
w ith dynam ically generated exciton-like gap were conjec
tu red  near the  D irac point [11, 12, 13, 14]. Experim ents 
in u ltra-h igh  m agnetic fields [15] have so far revealed only 
additional integer p lateaus a t v =  0, ±1  and ± 4 , which 
were a ttrib u ted  to  valley and spin splitting.

The m ost intriguing QHE sta te  is arguably th a t ob
served a t v =  0. Being intrinsically particle-hole sym m et
ric, it has no analog in sem iconductor-based QHE sys
tems. Interestingly, while it exhibits a step-like feature in 
<rxy, the experim entally m easured longitudinal and Hall 
resistance [15] (pxx and pxy ) display neither a clear quan
tized p lateau  nor a zero-resistance sta te , the  hallm arks 
of the conventional QHE. This unusual behavior was a t
trib u ted  to  sample inhom ogeneity [15] and rem ains unex
plained. In  this L etter, we show th a t such behavior near 
the Dirac point is in fact intrinsic to  Dirac fermions in 
graphene and indicates an opening of a spin gap in the 
energy spectrum  [4]. The gap leads to  counter-circulating 
edge sta tes carrying opposite spin [4, 5] which result in in
teresting  and ra th e r bizarre properties of th is QHE state. 
In  particular, even in the  com plete absence of bulk con
ductivity, this s ta te  has a nonzero pxx >  h /2 e 2 (i.e. the 
QHE sta te  is dissipative) w hereby pxy can change its sign 
as a function of density w ithout exhibiting a plateau.

We s ta r t w ith reviewing the experim ental s ituation  
near v =  0. O ur graphene devices were fabricated as
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FIG. 1: Longitudinal and Hall conductivities axx and axy (a) 
calculated from pxx and pxy measured at 4K and B =  30 T 
(b). The v =  0 plateau in axy and the double-peak structure 
in <rxx arise mostly from strong density dependence of pxx 
peak (green trace shows axy for another sample). The upper 
inset shows one of our devices. Temperature and magnetic 
field dependence of pxx near v =  0 are shown in the insets 
below. Note the metal-like temperature dependence of pxx.

described in Ref. [3] and fully characterized in fields B  up 
to  12T a t tem peratu res T  down to  1K . These m easure
m ents revealed the behavior characteristic  of single-layer 
g rap h en e [1]. Several devices were then  investigated in 
B  up to  30 T, where, besides the stan d ard  half-integer 
QHE sequence, the  v =  0 p lateau  becomes clearly visible 
as an additional step  in a xy (F ig.1). We note, however,
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FIG. 2: Excitation dispersion in v =  0 graphene QH state for 
a system with and without gapless chiral edge modes, (a) and 
(b) respectively. Case (a) is realized in spin-polarized v =  0 
state [4], while case (b) occurs when symmetry is incompatible 
with gapless modes, for example, in valley-polarized v =  0 
state conjectured in Ref.[15]. In the latter a gap opens at 
branch crossing due to valley mixing at the sample boundary.

th a t the step is not com pletely flat, and there is no clear 
zero-resistance p lateau  in pxy. Instead, pxy exhibits a 
fluctuating feature away from zero which seems try ing 
to  develop in a p lateau  (F ig .1b). [In some devices pxy 
passed through zero in a sm ooth way w ithout fluctua
tions.] M oreover, pxx does not exhibit a zero-resistance 
sta te  either. Instead, it has a pronounced peak near zero 
v which does not split in any field. The value a t the peak 
grows from pxx «  h /4 e 2 in zero B  (7.5 kQ for the shown 
devices) [1] to  pxx >  45 kQ a t 30 T  (see inset of F ig .1b).

At this point, the  absence of bo th  hallm arks of the 
conventional QHE in these experim ents can make one 
skeptical abou t the relation between the observed ex tra  
step  in <rxy and  an additional QHE plateau. However, 
the  described high-field behavior near v =  0 was found 
to  be universal (reproducible for different samples, m ea
surem ent geom etries and m agnetic fields above 20 T). It 
is also in agreem ent w ith th a t reported  in R ef.[15]. More
over, one can generally argue th a t the QHE a t v =  0 can
not possibly exhibit the usual hallm arks. Indeed, pxy has 
to  pass th rough zero because of the carrier-type change 
bu t pxx cannot sim ultaneously exhibit a zero-resistance 
sta te  because zero in b o th  pxy and pxx would indicate a 
dissipationless (superconducting) state.

To explain the anom alous behavior of the high-field 
QHE (Fig.1), we note th a t all microscopic models near 
the  D irac point can be broadly classified in two groups, 
QH m etal and QH insulator, as illustrated  in F ig .2. 
T ransport properties in these two cases are very different. 
The QH insulator (F ig .2b) is characterized by strongly 
tem pera tu re  dependent resistivity  diverging a t low T. 
The m etallic T-dependence observed a t v =  0 clearly 
rules out th is scenario. In the  QH m etal (F ig .2a), a pair 
of gapless edge excitations (Fig.2a) provides dom inant 
contribution to  <rxx, while tran sp o rt in the bulk is sup
pressed by an energy gap. Such dissipative QHE state 
will have a xx ~  e2/ h  ^  a xy, i.e. nom inally small Hall 
angle and apparen tly  no QHE. the roles of bulk and edge 
tran sp o rt here effectively interchange: The longitudinal 
response is due to  edge states, while the transverse re
sponse is determ ined m ainly by the bulk properties.

From  a general sym m etry viewpoint advanced by Fu,

K ane and Mele [16] the  existence of counter-circulating 
gapless excitations is controled by Z 2 invariants, p ro tec t
ing the spectrum  from gap opening a t branch crossing. 
In the spin-polarized QHE sta te  [4] this invariant is given 
by a z . W hile for o ther v =  0 QHE sta tes [11, 12, 13, 14] 
such invariants are not known, any viable theoretical 
model m ust present a m echanism  to  generate gapless edge 
states.

The m etallic tem pera tu re  dependence indicates strong 
dephasing th a t prevents onset of localization. To ac
count for th is observation, we suppose th a t the m ean 
free p a th  along the edge is sufficiently large, such th a t 
local equilibrium  in the energy d istribu tion  is reached 
in between backscattering events. For th a t, the ra te  of 
inelastic processes m ust exceed the elastic backscatter
ing rate: vinel ^  vei. This situation  occurs na tu ra lly  in 
the Zeem an-split QHE sta te  [4], since backscattering be
tween chiral modes carrying opposite spins is controlled 
by spin-orbital coupling which is small in graphene.

In the dephased regime, the  chiral channels are de
scribed by local chemical potentials, >̂1j2(x), whose de
viation from equilibrium  is related  to  currents:

I, = JV, h  =  - r 'P  2, h I  =  h  -  I 2 (1)

where I  is the  to ta l current on one edge. In the absence 
of backscattering  between the channels the currents I 12 
are conserved. In th is case, since the potentials >̂1j2 are 
constant along the edge, tran sp o rt is locally nondissipa
tive, sim ilar to  the usual QHE [17].

The origin of longitudinal resistance in this ideal case 
can be traced  to  the behavior in the contact regions. 
[Note the  resemblance of each edge in F ig .3a w ith two- 
probe m easurem ent geom etry for the  stan d ard  QHE.] We 
adopt the model of term al reservoirs [18] which assumes 
full m ixing of electron spin sta tes w ithin Ohmic contacts 
(see F ig .3b). W ith  currents I 1, I 2 flowing into the con
tac t, and equal currents i j 02ut') =  ^ ( I i  + / 2) flowing out,

the poten tia l of the probe is Vprobe =  ^ ^ i° 2ut')- Crucially, 
using E q .(1), there is a poten tia l drop across the  contact,

AV = -  h), (2)

equally for £ 1 and £ 2. The voltage between two contacts 
positioned a t the same edge (see F ig .3a) is equal to  Vxx =  
-̂ 2 1, which gives a universal resistance value [4]. This is 
in con trast w ith the usual QHE where there is no voltage 
drop between adjacent poten tia l probes [17, 18].

The longitudinal resistance increases and becomes 
nonuniversal in the  presence of backscattering. It can 
be described by tran sp o rt equations for charge density

dtU1 +  dx^1 
dtU2 -  0x^2

Y(<£>2 -  £1 ), 
Y(£1 -  £2), vi£ i , (3)

where y 1 is the  m ean free p a th  for 1d backscattering 
between modes 1 and 2, and V12  are compressibilities of
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FIG. 3: (a) Transport in a Hall bar geometry, Eqs.(3). The 
edge states denoted by red and blue carry opposite spin. 
Transport through the bulk is indicated by dotted lines. Volt
age probes used to measure longitudinal and Hall voltage are 
shown. (b) Voltage probe in a full spin mixing regime [18] 
measures V r̂obe =  Note finite voltage drop across
the probe, Eq.(2).

the  modes 1 and 2. In a s ta tionary  sta te , E q s.(3) have
an integral I  =  £1 -  £ 2 which expresses conservation of

2 -
current 1 = ^ - 1 .  The general solution in the s ta tionary

current-carry ing s ta te  is £ 1,2 (x) =  £*j°2 -  y x I .
For the Hall bar geom etry shown in F ig .3a, taking into 

account the  contribution of voltage drop across contacts, 
E q .(2), we find the voltage along the edge Vxx =  (yL  +  
1)I, where L is the  distance between the contacts. In 
the  absence of tran sp o rt th rough the bulk, if bo th  edges 
carry  the same current, the  longitudinal resistance is

h
Rxx = (7L + 1) pxx -- (w /L )R x (4)

w ith w /L  the  aspect ratio . From  pxx peak value (F ig .1) 
we estim ate yw  «  2.5, which gives the  backscattering 
m ean free p a th  of 0.4 ^m . The m etallic T-dependence 
of pxx signals an increase of scattering  w ith T  (F ig .1b 
inset). Similarly, pxx growing w ith B  is explained by 
enhancem ent in scattering  due to  electron wavefunction 
pushed a t high B  tow ards the disordered boundary.

An im portan t consequence of the 1d edge tran sp o rt 
is the  enhancem ent of fluctuations caused by position 
dependence of the scattering  ra te  y (x). Solving for the 
potentials a t the  edge,

£ 1,2 (x) £1°2 -  I

These fluctuations m anifest themselves in noisy fea
tures in the tran sp o rt coefficients near v =  0, arising 
from the dependence of the effective scattering  poten tia l 
on electron density. Such features can indeed be seen in 
pxy and pxx around v =  0 (F ig.1b). As discussed below, 
away from v =  0 bulk tran sp o rt becomes im portan t and 
short-circuits the  edge. This will lead to  suppression of 
fluctuations in pxx and  pxy away from v =  0, in agree
m ent w ith the behavior of the  fluctuations in F ig .1b.

A nother source of asym m etry in voltage d istribution  
on opposite sides of the Hall bar is the  poten tia l drop on 
a contact, Eq. (2). This quan tity  can be nonuniversal for 
im perfect contacts, leading to  finite transverse voltage. 
Such an effect can be seen in pxy d a ta  in F ig .1 near v =  0, 
where Hall effect in a pristine system  would vanish.

To describe tran sp o rt properties a t finite densities 
around v =  0, we m ust account for tran sp o rt in the 
bulk. This can be achieved by incorporating  in E q .(3) 
the term s describing the edge-to-bulk leakage:

dx£1 =  Y(£2 -  £ 1 ) +  3(^1 -  £1 ),
- d x £2 =  Y(£1 -  £ 2) +  3(^2 -  £ 2), (6)

where ^ 12 are the  up- and down-spin electrochemical 
potentials in the bulk near the  boundary. T ransport in 
the interior of the bar is described by tensor current-field 
relations w ith the longitudinal and Hall conductivities 
Oææ2), axy,2) for each spin com ponent. Com bined with 
current continuity, these relations yield the 2d L aplace’s 
equation for the quantities ^ 1,2, w ith boundary  condi
tions supplied by current continuity  a t the boundary:

Y (5)

^x x n .V ^ i +  axyn  x V f i  +  g (£ i -  ^  °  i =  1, 2, (7)

where n  is a un it norm al vector. [In E q .(7) and below 
we use the un its of e2/ h  =  1.] To describe dc current, we 
seek a solution of E q s.(6) on bo th  edges of the  bar w ith 
linear x dependence £ i (x) =  £ (0) -  Ex which satisfies 
boundary  conditions (7), where the functions ^ 12 have a 
similar linear dependence. The current is calculated from 
this solution as a sum  of the contributions from the bulk 
and bo th  edges. After elem entary bu t som ewhat tedious 
algebra we ob tain  a relation I  =  2E/Y , where

we see th a t the fluctuations in the  longitudinal resistance 
scale as a square-root of separation between the contacts:

I  / ^Y(y)dy, <5Rxx ~  (h /e 2

where a >  y -1  is a microscopic param eter which depends 
on the details of spatial correlation of Y(x). Similar effect 
leads to  fluctuations of the  Hall voltage which has zero 
average value a t v =  0. Assuming th a t the fluctuations 
of the poten tia l a t each edge, described by E q .(5), are 
independent, we estim ate 5 R xy ~  (h /e 2)y /L /a ,  where L  
is the  bar length.

2 _  4 w  

7 2Y +  3 +  p£> +

Aw r(1) /a' xy / a ;
(1) (2)ixy / a

(2)

p(2>pxx 2 +  A /a(x> +  A /a(x>
(8)

w ith w the bar w idth and A =  w 0y /(2y  +  3 ). The quan
tities axy,2) =  axy,2) ±  3 /(2 y  +  3 ) represent the  sum  of 
the bulk and edge contributions to  Hall conductivities, 
and pxx2) are defined as p ^  =  / ^ y 2 +  ax®;!2). The 
quan tity  Y , E q .(8), replaces y in E q .(4). At vanishing 
bulk conductivity, axx,2) ^  0, we recover Y =  Y.

T he Hall voltage can be calculated from this solution 
as Vff = 7j(ipi +  <fi2 — f v  — £ 2')) where ip^y  are variables

f

2
1

x

°
2

w

xi
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FIG. 4: Density dependence of transport coefficients pxx, pxy
and Gxx =  pxy/(p xy +  pxx ), Gxy =  pxy/(p xy +  pxx ) for a
Hall bar (Fig.3), obtained from the edge transport model (6) 
augmented with bulk conductivity (Eqs.(10),(8),(9), see text). 
The peak in pxx at v =  0 is due to the edge contribution, 
shunted by the bulk conductivity away from v =  0. Note the 
smooth behavior of pxy near v =  0, a tilted plateau in Gxy, 
and a double-peak structure in Gxx.

a t opposite edges. We ob tain  VH =  £E, where

a (1) A +  a (2) +  a (2) A +  a (1) a xy I A +  a xx I +  a xy l A +  a xx I
t  = 2W 9a(l)a (2) +A (2) A (1) ' (9) 2a xx a xx +  Aa xx +  Aa xx

This quan tity  vanishes a t v =  0, since ax^ =  - a x y  and 
ax( x) =  ax(2x) a t this point due to  particle-hole symmetry.

In F ig .4 we illustra te  the behavior of the  longitudinal 
and transverse resistance, calculated from E q s.(8),(9) as

pxx =  wY/2, pxy =  CI /2  (10)

w ith yw =  6, gw =  1 (the om itted  contact te rm  (2)
(1,2)is small for these param eters). C onductivities axx ), 

axy,2) are microscopic quantities, and their detailed de
pendence on the filling factor is beyond the scope of

(1,2)th is paper. Here we model the conductivities axx ) by 
gaussians centered a t v =  ± 1 , ax i,2) (v) =  e -A(v±1) , as 
appropria te  for valley-degenerate Landau level, whereby 
axy,2) is related  to  ax i,2) by the semicircle relation [19]: 
ax1y,2)(ax1y,2) T  2) +  (axx,2))2 =  0. In F ig .4 we used A =  5, 
however we note th a t none of the qualitative features de
pend on the details of the model.

F ig .4 reproduces m any of the  key features of the d a ta  
shown in F ig .1. The large peak in pxx is due to  edge 
tran sp o rt near v =  0. The peak is reduced a t finite v 
because the edge is short-circuited by the bulk conduc
tivity. The la tte r corresponds to  the  double peak struc
tu re  in G xx in F ig .4. We note th a t the  p a rt of G xx be
tween the  peaks exceeds the superposition of two G aus
sians which represent the bulk conductivity  in our model. 
This excess in G xx is the signature of the edge contribu
tion. The transverse resistance pxy is nonzero due to  
im balance in axy2) for opposite spin polarizations away 
from the particle-hole sym m etry  point v =  0. Notably,

pxy does not show any p lateau  in the theoretical curve 
(F ig .4), while G xy calculated from pxy and  pxx exhibits a 
plateau-like feature. This behavior is in agreem ent w ith 
experim ent (F ig.1 and R ef.[15]).

To conclude, QH tran sp o rt in graphene a t v =  0 is 
due to  counter-circulating edge states. In this dissipative 
QHE the roles of the  bulk and the edge interchange: the 
edge sta tes dom inate in the longitudinal conductance, 
while the  bulk conductivity  determ ines the Hall effect. 
This model explains the observed behavior of tran sp o rt 
coefficients, in particu lar the peak in pxx and its field and 
tem pera tu re  dependence, lending strong support to  the 
chiral spin-polarized edge picture of the v =  0 state.
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