1,482 research outputs found

    Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    Get PDF
    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation

    Physical Properties of OSIRIS-REx Target Asteroid (101955) 1999 RQ36 derived from Herschel, ESO-VISIR and Spitzer observations

    Full text link
    In September 2011, the Herschel Space Observatory performed an observation campaign with the PACS photometer observing the asteroid (101955) 1999 RQ36 in the far infrared. The Herschel observations were analysed, together with ESO VLT-VISIR and Spitzer-IRS data, by means of a thermophysical model in order to derive the physical properties of 1999 RQ36. We find the asteroid has an effective diameter in the range 480 to 511 m, a slightly elongated shape with a semi-major axis ratio of a/b=1.04, a geometric albedo of 0.045 +0.015/-0.012, and a retrograde rotation with a spin vector between -70 and -90 deg ecliptic latitude. The thermal emission at wavelengths below 12 micron -originating in the hot sub-solar region- shows that there may be large variations in roughness on the surface along the equatorial zone of 1999 RQ36, but further measurements are required for final proof. We determine that the asteroid has a disk-averaged thermal inertia of Gamma = 650 Jm-2s-0.5K-1 with a 3-sigma confidence range of 350 to 950 Jm-2s-0.5K-1, equivalent to what is observed for 25143 Itokawa and suggestive that 1999 RQ36 has a similar surface texture and may also be a rubble-pile in nature. The low albedo indicates that 1999 RQ36 very likely contains primitive volatile-rich material, consistent with its spectral type, and that it is an ideal target for the OSIRIS-REx sample return mission.Comment: Accepted for publication in Astronomy & Astrophysics, 9 pages, 7 figure

    Four conjectures in Nonlinear Analysis

    Full text link
    In this chapter, I formulate four challenging conjectures in Nonlinear Analysis. More precisely: a conjecture on the Monge-Amp\`ere equation; a conjecture on an eigenvalue problem; a conjecture on a non-local problem; a conjecture on disconnectedness versus infinitely many solutions.Comment: arXiv admin note: text overlap with arXiv:1504.01010, arXiv:1409.5919, arXiv:1612.0819

    Numerical Bifurcation Analysis of Conformal Formulations of the Einstein Constraints

    Full text link
    The Einstein constraint equations have been the subject of study for more than fifty years. The introduction of the conformal method in the 1970's as a parameterization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental non-uniqueness problems with the conformal method as a parameterization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods.Comment: 13 pages, 4 figures. Final revision for publication, added material on physical implication

    The Carbon2Chem<sub>®</sub> Laboratory in Oberhausen - A Workplace for Lab-Scale Setups within the Cross-Industrial Project

    Get PDF
    Within the Carbon2Chem® network, basic research is mandatory for a successful implementation and realization of sustainable technologies for CO2 emission reduction. For this purpose, the exchange of knowledge between the project partners in the individual subareas is as essential as obtaining precise data on the fundamental parameters on a laboratory scale in order to transfer them later to large-scale plants. Therefore, the Carbon2Chem® laboratory offers a platform to gain detailed insights into the individual sub-processes and to then apply these findings at the technical center in Duisburg

    A Complexity Measure for Continuous Time Quantum Algorithms

    Get PDF
    We consider unitary dynamical evolutions on n qubits caused by time dependent pair-interaction Hamiltonians and show that the running time of a parallelized two-qubit gate network simulating the evolution is given by the time integral over the chromatic index of the interaction graph. This defines a complexity measure of continuous and discrete quantum algorithms which are in exact one-to-one correspondence. Furthermore we prove a lower bound on the growth of large-scale entanglement depending on the chromatic index.Comment: 6 pages, Revte

    Optimal Constraint Projection for Hyperbolic Evolution Systems

    Get PDF
    Techniques are developed for projecting the solutions of symmetric hyperbolic evolution systems onto the constraint submanifold (the constraint-satisfying subset of the dynamical field space). These optimal projections map a field configuration to the ``nearest'' configuration in the constraint submanifold, where distances between configurations are measured with the natural metric on the space of dynamical fields. The construction and use of these projections is illustrated for a new representation of the scalar field equation that exhibits both bulk and boundary generated constraint violations. Numerical simulations on a black-hole background show that bulk constraint violations cannot be controlled by constraint-preserving boundary conditions alone, but are effectively controlled by constraint projection. Simulations also show that constraint violations entering through boundaries cannot be controlled by constraint projection alone, but are controlled by constraint-preserving boundary conditions. Numerical solutions to the pathological scalar field system are shown to converge to solutions of a standard representation of the scalar field equation when constraint projection and constraint-preserving boundary conditions are used together.Comment: final version with minor changes; 16 pages, 14 figure

    Perturbation Theory of Schr\"odinger Operators in Infinitely Many Coupling Parameters

    Full text link
    In this paper we study the behavior of Hamilton operators and their spectra which depend on infinitely many coupling parameters or, more generally, parameters taking values in some Banach space. One of the physical models which motivate this framework is a quantum particle moving in a more or less disordered medium. One may however also envisage other scenarios where operators are allowed to depend on interaction terms in a manner we are going to discuss below. The central idea is to vary the occurring infinitely many perturbing potentials independently. As a side aspect this then leads naturally to the analysis of a couple of interesting questions of a more or less purely mathematical flavor which belong to the field of infinite dimensional holomorphy or holomorphy in Banach spaces. In this general setting we study in particular the stability of selfadjointness of the operators under discussion and the analyticity of eigenvalues under the condition that the perturbing potentials belong to certain classes.Comment: 25 pages, Late

    Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

    Get PDF
    It is known by the experience gained from the gravitational wave detector proto-types that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, large part of it being essentially composed of long-term sinusoids with slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a non-linear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40meter proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.
    • …
    corecore