260 research outputs found

    The temporal relationship between local school closure and increased incidence of pediatric diabetic ketoacidosis

    Get PDF
    IMPORTANCE: The incidence of pediatric diabetic ketoacidosis (DKA) increased early in the COVID-19 pandemic, but the relative contribution of behavioral changes and viral-related pathophysiology are unknown. OBJECTIVE: To evaluate the relationship between school closure date and onset of increased DKA to help clarify the etiology of the increased incidence. DESIGN: A multi-center, quality-controlled Pediatric Intensive Care Unit (PICU) database was used to identify the number of admissions to a participating PICU with DKA on each calendar day from 60 days before local school closure to 90 days after, and compared to baseline data from the same periods in 2018-2019. Interrupted time series and multiple linear regression analyses were used to identify admission rates that differed significantly between 2020 and baseline. SETTING: Eighty-one PICUs in the United StatesParticipants: Children ages 29 days to 17 years admitted to a PICU with DKAExposures: Statewide school closureMain outcome/measure: Rate of admission to the PICU for DKA. RESULTS: There were 1936 admissions for children with DKA in 2020 and 1795 admissions/year to those same PICUs in 2018-2019. Demographics and clinical outcomes did not differ before school closure, but pandemic-era patients were less often white and had longer hospital length of stay in the post-school closure period. The difference between 2020 admissions and 2018-2019 admissions was not different than zero before school closure, and significantly higher than zero after school closure, but was significantly increased in 2020 at \u3e30 days after school closure ( CONCLUSIONS/RELEVANCE: An increase in pediatric DKA admissions began one month after school closures. Given that behavioral changes started near school closure dates and viral activity peaked weeks after, this suggests that behavioral factors may not be the primary etiology and it is possible that SARS-CoV-2 infection may have direct effects on pediatric DKA

    Upper bound on the scale of Majorana-neutrino mass generation

    Get PDF
    We derive a model-independent upper bound on the scale of Majorana-neutrino mass generation. The upper bound is 4πv2/3mν4\pi v^2/\sqrt 3 m_\nu, where v246v \simeq 246 GeV is the weak scale and mνm_\nu is the Majorana neutrino mass. For neutrino masses implied by neutrino oscillation experiments, all but one of these bounds are less than the Planck scale, and they are all within a few orders of magnitude of the grand-unification scale.Comment: 6 pages, 3 figures; REVTeX; published versio

    On the nature of the fourth generation neutrino and its implications

    Get PDF
    We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth generation neutrinos.Comment: To be published. Few typos corrected, references update

    Minimal Supersymmetric Inverse Seesaw: Neutrino masses, lepton flavour violation and LHC phenomenology

    Get PDF
    We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μeγ\mu \to e \gamma, and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.Comment: 26 pages, 4 figures; added explanatory comments, final version for publicatio

    Pathways to Naturally Small Neutrino Masses

    Full text link
    In the minimal standard electroweak gauge model, there is an effective dimension-five operator which generates neutrino masses, and it has only three tree-level realizations. One is the canonical seesaw mechanism with a right-handed neutrino. Another is having a heavy Higgs triplet as recently proposed. The third is to have a heavy Majorana fermion triplet, an example of which is presented here in the context of supersymmetric SU(5) grand unification. The three generic one-loop realizations of this operator are also discussed.Comment: 12 pages including 5 figures; corrected minus signs in Eqs.(5)-(6), no result is affecte

    Constraints from muon g-2 and LFV processes in the Higgs Triplet Model

    Full text link
    Constraints from the muon anomalous magnetic dipole moment and lepton flavor violating processes are translated into lower bounds on v_Delta*m_H++ in the Higgs Triplet Model by considering correlations through the neutrino mass matrix. The discrepancy of the sign of the contribution to the muon anomalous magnetic dipole moment between the measurement and the prediction in the model is clarified. It is shown that mu to e gamma, tau decays (especially, tau to mu e e), and the muonium conversion can give a more stringent bound on v_Delta*m_H++ than the bound from mu to eee which is expected naively to give the most stringent one.Comment: 18 pages, 16 figure

    Decoupling property of the supersymmetric Higgs sector with four doublets

    Full text link
    In supersymmetric standard models with multi Higgs doublet fields, selfcoupling constants in the Higgs potential come only from the D-terms at the tree level. We investigate the decoupling property of additional two heavier Higgs doublet fields in the supersymmetric standard model with four Higgs doublets. In particular, we study how they can modify the predictions on the quantities well predicted in the minimal supersymmetric standard model (MSSM), when the extra doublet fields are rather heavy to be measured at collider experiments. The B-term mixing between these extra heavy Higgs bosons and the relatively light MSSM-like Higgs bosons can significantly change the predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well as the mixing angle for the two light CP-even scalar states. We first give formulae for deviations in the observables of the MSSM in the decoupling region for the extra two doublet fields. We then examine possible deviations in the Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in Journal of High Energy Physic

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    Lepton Number Violation from Colored States at the LHC

    Full text link
    The possibility to search for lepton number violating signals at the Large Hadron Collider (LHC) in the colored seesaw scenario is investigated. In this context the fields that generate neutrino masses at the one-loop level are scalar and Majorana fermionic color-octets of SU(3). Due to the QCD strong interaction these states may be produced at the LHC with a favorable rate. We study the production mechanisms and decays relevant to search for lepton number violation signals in the channels with same-sign dileptons. In the simplest case when the two fermionic color-octets are degenerate in mass, one could use their decays to distinguish between the neutrino spectra. We find that for fermionic octets with mass up to about 1 TeV the number of same-sign dilepton events is larger than the standard model background indicating a promising signal for new physics.Comment: minor corrections, added reference

    Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

    Get PDF
    Neutrinoless double beta (0νββ0\nu\beta\beta) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, eLeL,eLeRe_Le_L, e_Le_R and eReRe_Re_R, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masses are always induced by these extra operators but can be delayed to one or two loops, depending on the number of RH leptons entering in the operator. Then, the comparison of the 0νββ0\nu\beta\beta decay rate and neutrino masses should indicate the effective scenario at work, which confronted with the LHC searches should also eventually decide on the specific model elected by nature. We also list the SM additions generating these operators upon integration of the heavy modes, and discuss simple realistic examples of renormalizable theories for each case.Comment: Accepted for publication. Few misprints corrected and new references adde
    corecore