357 research outputs found

    Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    Get PDF
    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences

    Modeling resilience and sustainability in ancient agricultural systems

    Get PDF
    The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past

    Unravelling the biogeography of secretive taxa by museum collections: the untold story of the black francolin (Francolinus francolinus, Phasianidae) in the Mediterranean

    Get PDF
    The black francolin (Francolinus francolinus) (BF) comprises six morphological subspecies distributed from Cyprus and Turkey across Asia to India. In spite of being renowned as courtly gamebird since the Classic Age, this species suffers from paucity of demographic and molecular studies. In order to update the BF biogeographic pattern by pursuing a thorough sampling across the unsafe and remote areas representing most of the specie’s range, tissues from museum specimens (76, XVIIIth c.-­‐1954) hosted in US and European ornithological collections were genotyped at a 185 bp-­‐long fragment of the mtDNA Control Region gene along with modern birds (205) sequenced at the entire gene. The access to ornithological collections opened the unforeseen opportunity to elucidate the genetic affinity of the extinct populations once residing in the western Mediterranean (Italy, Spain), thus settling the debate about autochthony versus allochthony in that region. Three well-­‐defined haplogroups -­‐ each one including a pair of morphological subspecies and matching the phylogeographical pattern inferred with the whole gene -­‐ were found to reflect a westward adaptive radiation, a more complex scenario being nonetheless disclosed in the Indian sub-­‐continent. The nonnative status of the western Mediterranean BFs was ultimately assessed, a tight genetic affinity with conspecifics from Cyprus and southern Asia being found. This finding, which partly confirmed the invoked importation during the Crusades, pointed to the major human impact on Mediterranean biodiversity through long-­‐distance trade across Asia to satisfy the high demand for exotic species by the European aristocracy during the Medieval times and the Renaissance

    Reply to Ellis et al.: human niche construction and evolutionary theory

    Get PDF
    We are pleased Ellis et al. found value in our recent synthesis of the deep history of human impacts on global ecosystems and agree that our paper should influence the current debate on if and how an Anthropocene epoch is defined. We also agree that the ecological consequences of human niche construction have profound and growing effects on the evolutionary trajectories of humans and other species living within human-altered ecosystems. Niche construction theory (NCT) provides an explicit framework for linking evolutionary and ecological processes into a coherent theory of biological evolution. Of special appeal to us as archaeologists is that NCT bridges biological and cultural evolution by including human culture and social learning within the mechanisms of evolutionary change, allowing scientists to address issues at the interface of human and natural systems. Some of us have contributed significantly to human NCT, addressing some of the very issues raised by Ellis et al. Finally, we agree that human transformations of ecosystems are inherently social processes—clearly humans are intensely social organisms—and that such processes result from long-term melding of biological and cultural evolution

    Reply to Westaway and Lyman: emus, dingoes, and archaeology’s role in conservation biology

    Get PDF
    In a curious comment on our PNAS Perspective, Westaway and Lyman offer two Australian zooarchaeological case studies—one involving eggshells and the other dingoes—that they argue undercut one of our main points: that archaeological data and deep time perspectives have much to offer conservation biology. Neither example provides a specific substantive critique of our perspective: there are no dingoes in our article, no eggshells, and we mention the long and rich record of human management and alteration of Australian environments only briefly. Nor do we suggest that all archaeological assemblages can effectively inform current conservation biology efforts. Such datasets obviously vary in their quality and potential applicability to modern situations. When considered more closely, both of Westaway and Lyman’s case studies underscore rather than undercut the importance of archaeological and paleoecological data in conservation biology initiatives

    Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

    Get PDF
    Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¨rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¨diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¨hrig, Maguerita Scha¨fer, Jo¨rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¨lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¨nchen; Museum fu¨r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD

    Approaching ancient disease from a One Health perspective: Interdisciplinary review for the investigation of zoonotic brucellosis

    Get PDF
    Today, brucellosis is the most common global bacterial zoonosis, bringing with it a range of significant health and economic consequences, yet it is rarely identified from the archaeological record. Detection and understanding of past zoonoses could be improved by triangulating evidence and proxies generated through different approaches. The complex socio‐ecological systems that support zoonoses involve humans, animals, and pathogens interacting within specific environmental and cultural contexts, and as such there is a diversity of potential datasets that can be targeted. To capture this, in this paper we consider how to approach the study of zoonotic brucellosis in the past from a One Health perspective, one which explicitly acknowledges the health link between people, animals and environments (both physical and cultural). One Health research is explicitly interdisciplinary and conceptually moves away from an anthropocentric approach, allowing the component parts to be considered in holistic and integrated ways to deliver more comprehensive understanding. To this end, in this paper we review the methods, selected evidence and potential for past brucellosis identification and understanding, focussing on osteological markers in humans and animals, historical, biomolecular and epidemiological approaches. We also present an agenda and potential for future research

    Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity

    Get PDF
    Background. From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. Methodology/Principal Findings. The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. Conclusions/Significance. We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of reference. Such a method could be also applied for clarifying the nomenclature of mitochondrial haplogroups in other domestic species

    A morphometric system to distinguish sheep and goat postcranial bones.

    Get PDF
    Distinguishing between the bones of sheep and goat is a notorious challenge in zooarchaeology. Several methodological contributions have been published at different times and by various people to facilitate this task, largely relying on a macro-morphological approach. This is now routinely adopted by zooarchaeologists but, although it certainly has its value, has also been shown to have limitations. Morphological discriminant criteria can vary in different populations and correct identification is highly dependent upon a researcher's experience, availability of appropriate reference collections, and many other factors that are difficult to quantify. There is therefore a need to establish a more objective system, susceptible to scrutiny. In order to fulfil such a requirement, this paper offers a comprehensive morphometric method for the identification of sheep and goat postcranial bones, using a sample of more than 150 modern skeletons as a basis, and building on previous pioneering work. The proposed method is based on measurements-some newly created, others previously published-and its use is recommended in combination with the more traditional morphological approach. Measurement ratios, used to translate morphological traits into biometrical attributes, are demonstrated to have substantial diagnostic potential, with the vast majority of specimens correctly assigned to species. The efficacy of the new method is also tested with Discriminant Analysis, which provides a successful verification of the biometrical indices, a statistical means to select the most promising measurements, and an additional line of analysis to be used in conjunction with the others
    • …
    corecore