3 research outputs found

    Evolocumab and clinical outcomes in patients with cardiovascular disease

    Full text link
    peer reviewedBACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets. © 2017 Massachusetts Medical Society

    Evolocumab and clinical outcomes in patients with cardiovascular disease

    No full text
    BACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets

    Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.

    Get PDF
    BACKGROUND: Whether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear. METHODS: In a randomized, double-blind, noninferiority study, we randomly assigned patients with acute venous thromboembolism, who had initially received heparin, to receive edoxaban at a dose of 60 mg once daily, or 30 mg once daily (e.g., in the case of patients with creatinine clearance of 30 to 50 ml per minute or a body weight below 60 kg), or to receive warfarin. Patients received the study drug for 3 to 12 months. The primary efficacy outcome was recurrent symptomatic venous thromboembolism. The principal safety outcome was major or clinically relevant nonmajor bleeding. RESULTS: A total of 4921 patients presented with deep-vein thrombosis, and 3319 with a pulmonary embolism. Among patients receiving warfarin, the time in the therapeutic range was 63.5%. Edoxaban was noninferior to warfarin with respect to the primary efficacy outcome, which occurred in 130 patients in the edoxaban group (3.2%) and 146 patients in the warfarin group (3.5%) (hazard ratio, 0.89; 95% confidence interval [CI], 0.70 to 1.13; P&lt;0.001 for noninferiority). The safety outcome occurred in 349 patients (8.5%) in the edoxaban group and 423 patients (10.3%) in the warfarin group (hazard ratio, 0.81; 95% CI, 0.71 to 0.94; P=0.004 for superiority). The rates of other adverse events were similar in the two groups. A total of 938 patients with pulmonary embolism had right ventricular dysfunction, as assessed by measurement of N-terminal pro-brain natriuretic peptide levels; the rate of recurrent venous thromboembolism in this subgroup was 3.3% in the edoxaban group and 6.2% in the warfarin group (hazard ratio, 0.52; 95% CI, 0.28 to 0.98). CONCLUSIONS: Edoxaban administered once daily after initial treatment with heparin was noninferior to high-quality standard therapy and caused significantly less bleeding in a broad spectrum of patients with venous thromboembolism, including those with severe pulmonary embolism. (Funded by Daiichi-Sankyo; Hokusai-VTE ClinicalTrials.gov number, NCT00986154.)
    corecore