143 research outputs found

    Microglia Prevent Beta-Amyloid Plaque Formation in the Early Stage of an Alzheimer\u27s Disease Mouse Model with Suppression of Glymphatic Clearance

    Get PDF
    BACKGROUND: Soluble beta-amyloid (Aβ) can be cleared from the brain through various mechanisms including enzymatic degradation, glial cell phagocytosis, transport across the blood-brain barrier, and glymphatic clearance. However, the relative contribution of each clearance system and their compensatory effects in delaying the pathological process of Alzheimer\u27s disease (AD) are currently unknown. METHODS: Fluorescent trace, immunofluorescence, and Western blot analyses were performed to compare glymphatic clearance ability and Aβ accumulation among 3-month-old APP695/PS1-dE9 transgenic (APP/PS1) mice, wild-type mice, aquaporin 4 knock out (AQP4−/−) mice, and AQP4−/−/APP/PS1 mice. The consequence of selectively eliminating microglial cells, or downregulating apolipoprotein E (apoE) expression, on Aβ burden, was also investigated in the frontal cortex of AQP4−/−/APP/PS1 mice and APP/PS1 mice. RESULTS: AQP4 deletion in APP/PS1 mice significantly exaggerated glymphatic clearance dysfunction, and intraneuronal accumulation of Aβ and apoE, although it did not lead to Aβ plaque deposition. Notably, microglia, but not astrocytes, increased activation and phagocytosis of Aβ in the cerebral cortex of AQP4−/−/APP/PS1 mice, compared with APP/PS1 mice. Selectively eliminating microglia in the frontal cortex via local injection of clodronate liposomes resulted in deposition of Aβ plaques in AQP4−/−/APP/PS1 mice, but not APP/PS1 mice. Moreover, knockdown of apoE reduced intraneuronal Aβ levels in both APP/PS1 mice and AQP4−/−/APP/PS1 mice, indicating an inhibitory effect of apoE on Aβ clearance. CONCLUSION: The above results suggest that the glymphatic system mediated Aβ and apoE clearance and microglia mediated Aβ degradation synergistically prevent Aβ plague formation in the early stages of the AD mouse model. Protecting one or both of them might be beneficial to delaying the onset of AD

    Antithrombin III Alleviates Myocardial Ischemia/Reperfusion Injury by Inhibiting Excessive Autophagy in a Phosphoinositide 3-Kinase/Akt-Dependent Manner

    Get PDF
    Autophagy is fundamental to myocardial ischemia/reperfusion (I/R) injury. Antithrombin III (AT) has been shown to protect cardiomyocytes against I/R injury; however, it is unknown whether it modulates autophagy. The objective of this study was to investigate whether AT regulates autophagy during I/R injury and, if so, to identify the potential mechanism involved. Our study showed that AT attenuated I/R injury in vivo and hypoxia/reoxygenation (H/R) injury in vitro. Autophagy was increased both in H9C2 cardiomyocytes during H/R injury and in mouse hearts following I/R injury. The stimulation of autophagy by rapamycin attenuated the protective effect of AT against H9C2 cell injury, indicating that autophagy is involved in the protective role of AT. Furthermore, the cardioprotective effects of AT were abolished by A6730, a specific Akt inhibitor. This study shows that AT exhibits cardioprotective effects by modulating autophagy during I/R injury in a phosphoinositide 3-kinase/Akt-dependent manner

    A Multiplex Genome Editing Method for Escherichia coli Based on CRISPR-Cas12a

    Get PDF
    Various methods for editing specific sites in the Escherichia coli chromosome are available, and gene-size (∼1 kb) integration into a single site or to introduce deletions, short insertions or point mutations into multiple sites can be conducted in a short period of time. However, a method for rapidly integrating multiple gene-size sequences into different sites has not been developed yet. Here, we describe a method and plasmid system that makes it possible to simultaneously insert genes into multiple specific loci of the E. coli genome without the need for chromosomal markers. The method uses a CRISPR-Cas12a system to eliminate unmodified cells by double-stranded DNA cleavage in conjunction with the phage-derived λ-Red recombinases to facilitate recombination between the chromosome and the donor DNA. We achieved the insertion of up to 3 heterologous genes in one round of recombination and selection. To demonstrate the practical application of this gene-insertion method, we constructed a recombinant E. coli producing an industrially useful chemical, 5-aminolevulinic acid (ALA), with high-yield. Moreover, a similar two-plasmid system was built to edit the genome of the extremophile Halomonas bluephagenesis

    Transcriptomic analyses of regenerating adult feathers in chicken

    Get PDF
    Transcriptome Expression Data. Table of mapped reads to Galgal4 transcripts for all 15 data sets. FPKM (Fragments per kilobase of exon per million fragments mapped): normalized transcript abundance values for each gene in the indicated tissues. (CSV 1314 kb

    N-linoleyltyrosine resisted the growth of non-small cell lung cancer cells via the regulation of CB1 and CB2 involvement of PI3K and ERK pathways

    Get PDF
    Background: N-linoleyltyrosine (NITyr), one of the anandamide analogs, exerts activity via the endocannabinoid receptors (CB1 and CB2), which showed anti-tumor effects in various tumors. Therefore, we speculated that NITyr might show anti-non-small cell lung cancer (NSCLC) effects via the CB1 or CB2 receptor. The purpose of the investigation was to reveal the anti-tumor ability of NITyr on A549 cells and its mechanisms.Methods: The viability of A549 cells was measured by MTT assay, and the cell cycle and apoptosis were both examined by flow cytometry; in addition, cell migration was tested by wound healing assay. Apoptosis-related markers were measured by immunofluorescence. The downstream signaling pathways (PI3K, ERK, and JNK) of CB1 or CB2 were examined through Western blotting. The expressions of CB1 and CB2 were detected by immunofluorescence. Finally, the AutoDock software was used to validate the binding affinity between the targets, such as CB1 and CB2, with NITyr.Results: We found that NITyr inhibited cell viability, hindered the cell cycle, resulted in apoptosis, and inhibited migration. The CB1 inhibitor, AM251, and the CB2 inhibitor, AM630, weakened the aforementioned phenomenon. The immunofluorescence assay suggested that NITyr upregulated the expression of CB1 and CB2. Western blot analysis indicated that NITyr upregulated the expression of p-ERK, downregulated the expression of p-PI3K, and did not affect p-JNK expression. In conclusion, NITyr showed a role in inhibiting NSCLC through the activation of CB1 and CB2 receptors involved in PI3K and ERK pathways

    Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation

    Get PDF
    Proteins of the 14-3-3 family regulate a divergent set of signalling pathways in all eukaryotic organisms. In this study, several cDNAs encoding 14-3-3 proteins were isolated from a cotton fibre cDNA library. The Gh14-3-3 genes share high sequence homology at the nucleotide level in the coding region and at the amino acid level. Real-time quantitative RT-PCR analysis indicated that the expression of these Gh14-3-3 genes is developmentally regulated in fibres, and reached their peak at the stage of rapid cell elongation of fibre development. Furthermore, overexpression of Gh14-3-3a, Gh14-3-3e, and Gh14-3-3L in fission yeast promoted atypical longitudinal growth of the host cells. Yeast two-hybrid analysis revealed that the interaction between cotton 14-3-3 proteins is isoform selective. Through yeast two-hybrid screening, 38 novel interaction partners of the six 14-3-3 proteins (Gh14-3-3a, Gh14-3-3e, Gh14-3-3f, Gh14-3-3g, Gh14-3-3h, and Gh14-3-3L), which are involved in plant development, metabolism, signalling transduction, and other cellular processes, were identified in cotton fibres. Taking these data together, it is proposed that the Gh14-3-3 proteins may participate in regulation of fibre cell elongation. Thus, the results of this study provide novel insights into the 14-3-3 signalling related to fibre development of cotton

    The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens

    Get PDF
    © 2014 The Authors. Published by Elsevier Inc. Background A sequenced house dust mite (HDM) genome would advance our understanding of HDM allergens, a common cause of human allergies. Objective We sought to produce an annotated Dermatophagoides farinae draft genome and develop a combined genomic-transcriptomic-proteomic approach for elucidation of HDM allergens. Methods A D farinae draft genome and transcriptome were assembled with high-throughput sequencing, accommodating microbiome sequences. The allergen gene structures were validated by means of Sanger sequencing. The mite's microbiome composition was determined, and the predominant genus was validated immunohistochemically. The allergenicity of a ubiquinol-cytochrome c reductase binding protein homologue was evaluated with immunoblotting, immunosorbent assays, and skin prick tests. Results The full gene structures of 20 canonical allergens and 7 noncanonical allergen homologues were produced. A novel major allergen, ubiquinol-cytochrome c reductase binding protein-like protein, was found and designated Der f 24. All 40 sera samples from patients with mite allergy had IgE antibodies against rDer f 24. Of 10 patients tested, 5 had positive skin reactions. The predominant bacterial genus among 100 identified species was Enterobacter (63.4%). An intron was found in the 13.8-kDa D farinae bacteriolytic enzyme gene, indicating that it is of HDM origin. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a phototransduction pathway in D farinae, as well as thiamine and amino acid synthesis pathways, which is suggestive of an endosymbiotic relationship between D farinae and its microbiome. Conclusion An HDM genome draft produced from genomic, transcriptomic, and proteomic experiments revealed allergen genes and a diverse endosymbiotic microbiome, providing a tool for further identification and characterization of HDM allergens and development of diagnostics and immunotherapeutic vaccines.Link_to_subscribed_fulltex

    Associations of long-term visit-to-visit blood pressure variability with subclinical kidney damage and albuminuria in adulthood: a 30-year prospective cohort study

    Get PDF
    Background: Recent evidence indicates that long-term visit-to-visit blood pressure variability (BPV) may be associated with risk of cardiovascular disease. We, therefore, aimed to determine the potential associations of long-term BPV from childhood to middle age with subclinical kidney damage (SKD) and albuminuria in adulthood. Methods: Using data from the ongoing cohort of Hanzhong Adolescent Hypertension study, which recruited children and adolescents aged 6 to 18 years at baseline, we assessed BPV by SD and average real variability (ARV) for 30 years (6 visits). Presence of SKD was defined as estimated glomerular filtration rate between 30 and 60 mL/min per 1.73 m2 or elevated urinary albumin-to creatinine ratio at least 30 mg/g. Albuminuria was defined as urinary albumin-to creatinine ratio ≥30 mg/g. Results: During 30 years of follow-up, of the 1771 participants, 204 SKD events occurred. After adjustment for demographic, clinical characteristics, and mean BP during 30 years, higher SDSBP, ARVSBP, SDDBP, ARVDBP, SDMAP, ARVMAP, and ARVPP were significantly associated with higher risk of SKD. When we used cumulative exposure to BP from childhood to adulthood instead of mean BP as adjustment factors, results were similar. In addition, greater long-term BPV was also associated with the risk of albuminuria. Long-term BPV from childhood to middle age was associated with higher risk of SKD and albuminuria in adulthood, independent of mean BP or cumulative exposure to BP during follow-up. Conclusions: Identifying long-term BPV from early age may assist in predicting kidney disease and cardiovascular disease in later life
    corecore