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Abstract

Background: Feathers have diverse forms with hierarchical branching patterns and are an excellent model for
studying the development and evolution of morphological traits. The complex structure of feathers allows for
various types of morphological changes to occur. The genetic basis of the structural differences between different
parts of a feather and between different types of feather is a fundamental question in the study of feather diversity,
yet there is only limited relevant information for gene expression during feather development.

Results: We conducted transcriptomic analysis of five zones of feather morphologies from two feather types at
different times during their regeneration after plucking. The expression profiles of genes associated with the
development of feather structure were examined. We compared the gene expression patterns in different types of
feathers and different portions of a feather and identified morphotype-specific gene expression patterns. Many
candidate genes were identified for growth control, morphogenesis, or the differentiation of specific structures of
different feather types.

Conclusion: This study laid the ground work for studying the evolutionary origin and diversification of feathers as
abundant data were produced for the study of feather morphogenesis. It significantly increased our understanding
of the complex molecular and cellular events in feather development processes and provided a foundation for
future studies on the development of other skin appendages.
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Background
The genetic and developmental basis of morphological
complexity is one of the most important issues in
evolutionary biology [1, 2]. Avian feather provides an
excellent system for studying the evolution and devel-
opment of novel morphological traits because it has
diverse forms [3–6], and the complex structure of
feathers allows for various types of morphological
changes to occur. Yet, feathers are homologous with
the simpler scales of reptiles and could have evolved
from a scale-like epidermal appendage of dinosaurian
ancestors of birds [7–10].
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Feathers have evolved to have different forms in color,
morphology and mechanical properties not only among
different bird species, but also among different body
regions of a bird individual, giving us an excellent model
to study the molecular basis of phenotypic variation of an
important structure in a single species. The feather has
been used as a model to study morphogenesis of skin
appendages [11, 12]. Several candidate genes have been
found to be involved in feather formation [13]. For exam-
ples, barb and rachis are formed by a periodic invagination
and regulated by BMP, NOG, SPRY, and FGF. Moreover,
the basal branch pattern is formed by differential cell
death and regulated by NCAM, SHH, and caspase. In
addition, radial, bilateral symmetric, and asymmetric
branching patterns are formed by modulating basal
branching circuit that is involved the WNT3A gradient
and SPRY. However, the genetic basis of feather variation
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is still largely unknown. A better understanding of the
molecular dynamics associated with the process of feather
growth will provide insight into the evolution of diverse
feather structures.
The feather is also an excellent example of exapta-

tion. Feathers initially might have evolved for heat
regulation, but were then co-opted for display, and
later co-opted for flight. These and other evolution-
ary novelties probably have occurred by changing the
expression patterns of genes involved in feather
development. The evolutionary co-option of plesio-
morphic molecular signaling modules allows for the
morphological innovations of feathers to originate
and evolve [14, 15].
A hypothesis of morphological evolution postulates

that form evolves largely through altering the expression
of conserved genes [2]. The molecular and developmen-
tal mechanisms that produce the diversification of
feather are still poorly understood. The epithelium and
the mesenchyme are two major components in feather
follicles [16–18]. The epithelium includes both the epithe-
lium enwrapping the mesenchyme and the feather wall
epithelium that is connected with the interfollicular epi-
dermis. The mesenchyme includes the dermal papilla and
the pulp [19, 20]. The invagination of the multilayered
epithelium in the ramogenic zone starts branching mor-
phogenesis. The rachis is formed by fusion of barb ridges
at the anterior end of the feather. The marginal plate in
basal layer flanking each barb ridge and axial cells undergo
apoptosis after the barbule plates are keratinized. The
feather branches open in the more mature distal end after
the apoptosis of feather sheath and pulp epithelium.
Thanks to the feasibility of experimental manipulation
and observation, feather regeneration can be analyzed in a
comprehensive way and has been proposed to be a unique
model for understanding organogenesis [11].
High-throughput sequencing technologies have been

applied to characterize transcriptome architectures
[21–26]. Systems biology study provides a new technol-
ogy platform that can reveal molecular expression
profiles associated with different morphological devel-
opments. Bioinformatic analyses are used to identify
genes associated with feather and scale differences [27].
These technologies and skills were used in this study.
The main goal of this study was to identify differentially

expressed genes between different portions of feather
using RNA-Seq. We characterized and quantified mRNAs
that are expressed in the feather base during feather devel-
opment in the domestic chicken. Feathers develop from
the distal end to the proximal end in a temporal-spatial
manner, thus providing an opportunity to analyze gene
expression profiles associated with different zones of a
feather (Fig. 1a) [5]. Two zones of body feather and three
zones of flight feather were selected to represent
morphological, structural, and mechanical property differ-
ences in feathers (Additional file 1: Figure S1). We made
four comparisons: 1) between pennaceous and plumulac-
eous portions of body feather for understanding how the
morphological differences between two parts of a body
feather arise; 2) between the pennaceous portions of body
feather and flight feather for understanding differences in
physical and mechanical properties; 3) between the distal
pennaceous portion and the proximal pennaceous portion
of flight feather for understanding how the morphological
differences between two parts of a flight feather arise; 4)
between the proximal pennaceous portion and the cala-
mus of a flight feather for understanding how the barb
and rachis are differentiated. These analyses shed light on
the genetic basis of feather diversity.

Results and discussions
Transcriptome data
We used Illumina Hiseq 2000 to obtain five feather tran-
scriptomes from the pennaceous and plumulaceous por-
tions of body feather, the distal and proximal parts of
flight feather, and the flight feather calamus (Additional
file 1: Figure S1). Each sample was a pool of mRNA from
two-three follicle epidermis of one individual. Three
cDNA libraries with insert lengths ranging from 300 to
400 bp were constructed for each sample. The RNA-seq
data had been used previously to study the expression
pattern of α-and β-keratin genes [28]. In this study we
conducted a detailed analysis of the expression patterns
for all genes (Additional file 2: Table S1).
To validate the expression data obtained by RNA-Seq,

ten genes were selected from the differentially expressed
protein-coding genes to perform real time quantitative
PCR (RT-qPCR) assays. Reproducibility of the data was
confirmed by the strong correlation between the values of
gene expression obtained by RNA-Seq and RT-qPCR
(Additional file 1: Figure S2). When the pattern of gene
expression levels was compared, strong correlations (R2)
ranging from 0.833 to 0.998 between RT-qPCR and RNA-
Seq platforms were observed for 90 % of the expressed
genes exception for one sample (with R2 = 0.618), confirm-
ing the high reproducibility of the data.
For those genes with a FPKM> 0.1 (FPKM= Fragments

Per Kilobase of transcript per Million mapped reads),
there were 12,608 genes expressed in all three biological
replicates of at least one type of the feather epithelium in
the total transcriptomes. Principal components analysis
(PCA) showed that samples from the same group clus-
tered together (Fig. 1b). This observation suggests that
each sample harbors transcriptomic features that are
unique to the feather types or regions. The genes identi-
fied in the GO enrichment analysis of the most abundant
transcripts in these samples are involved in protein trans-
lation, reflecting the rapid production of a protein-made



Fig. 1 Principal component analysis of gene expression profiles. (a) Morphology of body (left) and flight feathers (right). (b) Principal Component
Analysis (PCA) of gene expression profile. The results were obtained by analyzing 12,608 genes with FPKM >0.1 in all libraries. cEB, early body
feather of chicken (pennaceous); cLB, late body feather (plumulaceous); cEF, early primary flight feather; cMF, middle primary flight feather; cLF,
late primary flight feather (calamus)
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structure (Fig. 2). These results are consistent with the
efficient biosynthesis of proteins in the feather follicles.
Genes involved in developmental morphogenesis as well
as cytoskeletons are also highly abundant in developing
feather epithelia.
An aggregate total of 13,973 expressed genes was

expressed (FPKM > 0.1) in at least one of the 15 samples
(Additional file 4: Table S3), among which 9,638 genes
were expressed in all 15 samples (Fig. 3). In general, the
flight feather has more specifically expressed genes than
the body feather. The GO enrichment analysis showed
that the specifically expressed genes of the body feather
are not significantly enriched for any known functions,
whereas those of the flight feather are significantly
enriched for several functions (Fig. 3). We also found
that 49 genes previously identified to have undergone
rapid evolution and/or positive selection in avian line-
ages [29] are expressed in all feather samples (Additional
file 5: Table S4). Most of these rapidly evolving and/or
positively selected genes are enriched for cytoskeleton
and cell adhesion. These proteins may have evolved new
functions or properties in feathers and it is worth further
investigation.

Transcriptomic comparison between distal and proximal
body feathers
The distal end of a feather forms earlier than the prox-
imal end and the structure and shape of a body feather
change dynamically from the distal end to the proximal
end. The distal end of a body feather is mainly pennac-
eous while the barbs of the proximal end become plu-
mulaceous (Additional file 1: Figure S1). Among the 957
differentially expressed protein-coding genes (DEGs),
223 were up-regulated, while 734 were down-regulated
in the plumulaceous portion in comparison to the
pennaceous portion (Fig. 4a, Additional file 6: Table S5).
IPA (Ingenuity Pathway Analysis) canonical pathway
analysis showed that several genes involved in sema-
phorin signaling in neurons (PLXNA1, NRP1, DPYSL3,
MAPK1, CDK5) were differentially expressed between
pennaceous and plumulaceous body feathers (Fig. 5,
Additional file 10: Table S9). Semaphorin signaling is
known to play an important role in intersomitic vessels,
lung, and kidney branching morphogenesis [30, 31], but
has not been reported to play any role in feather mor-
phogenesis. A bone morphogenetic protein, BMP2, was
predicted to be the upstream regulator for gene expres-
sion differences (Table 1). Level of BMP activity has
been shown to determine barb ridge branching morpho-
genesis [19]. Interactions between activators and inhibi-
tors involving Sonic hedgehog (SHH) and BMP2 have
been suggested to be involved in the formation of barb
ridges in feathers [32].
Among the up-regulated genes in the pennaceous

portion compared to the plumulaceous portion of the
body feather, the expression of genes involved in protein



Fig. 2 Gene ontology (GO) annotation for top 3,000 transcripts that were highly expressed in feather epithelium
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translation, oxidative phosphorylation, pyrimidine metab-
olism, ribosomal subunit, contractile fiber part, Peptidyl-
prolyl cis-trans isomerase activity, inorganic cation trans-
membrane transporter activity was increased significantly
(Table 2). The up-regulation of genes in these groups may
be due to the need of large quantities of protein synthesis
in the pennaceous portion of the body feather.
Genes involved in amino acid transmembrane trans-

porter activity, lysosome, tube development, enzyme
linked receptor protein signaling pathway, carboxylic
acid biosynthetic process, and plasma membrane were
increased significantly when the growth of a body fea-
ther turns to the plumulaceous portion. Six genes in-
volved in tube development (SP3, NRP1, EPAS1, TP63,
BMPR-II, BMPR1A) and six genes involved in enzymes
linked receptor protein signaling pathway (SMAD5,
MADH2, BMPR1A, NRP1, BMPR-II, EGFR) were up-
regulated. Among these genes, TP63, a transcription fac-
tor of the p53 family, is known to be essential for the de-
velopment of epidermis and its derivatives in vertebrates
[33, 34]. In situ hybridization studies in chickens have
shown that TP63 is highly expressed in the apical ecto-
dermal ridge (AER) of the limb buds, interdigital tissues,
epithelium of branchial arches, and feather buds [35].
Two receptors of BMPs were differentially expressed.
Signaling via BMPRIA and BMPRIB is required to regu-
late intramembranous bone formation, chondrogenesis,
and feather formation in chicken embryos [36]. The an-
tagonistic balance between noggin and BMP4 has been
shown to play a critical role in feather branching, with



Fig. 3 Venn diagram showing the genes expressed in each of the five feather tissue types. Among these genes, 9,638 are expressed at all five
samples, 10,001 are co-expressed in cEB and cLB, 10,173 are co-expressed in cEB and cEF, 11,283 are co-expressed in cEF and cMF, and 11,132 are
co-expressed in cMF and cLF. The GO enrichment analysis showed that the specifically expressed genes of the body feather (cEB and cLB) are
not significantly enriched for any known functions, whereas those of the flight feather (cEF, cMF, and cLF) are significantly enriched for several
functions indicated in the figure
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BMP4 promoting rachis formation and barb fusion, and
noggin enhancing rachis and barb branching [19].
Epidermal growth factor (EGF) signaling is known to be
required to pattern the feather array by promoting the
interbud development [37].

Transcriptomic comparison between pennaceous body
and flight feathers
Among the 1,287 DEGs between pennaceous body and
flight feathers, 988 were up-regulated and 299 genes
were down-regulated in the pennaceous body feather
(Fig. 4b, Additional file 7: Table S6). IPA canonical path-
way analysis showed that these DEGs included several
genes involved in the Sertoli cell-Sertoli cell junction
signaling (PVRL1, TJP1, TUBB3, CLDN3, CLDN4, CGN,
TUBB4B, RAB8B, PRKAR1A, MAP3K1, TUBA1B,
MAPK1, TUBA4A, TJP3) and in the regulation of the
epithelial-mesenchymal transition pathway (FGFR2,
FGFR3, EGFR, PDGFD, PARD6A, JAG1, CLDN3,
SMAD2, FZD2, JAK1, PYGO2, HIF1A, MAPK1, WNT6,
HMGA2) (Fig. 5, Additional file 11: Table S10).
Among the up-regulated genes in the pennaceous

portion of the body feather, the expression of genes
involved in translation, oxidative phosphorylation,
pyrimidine metabolism, ribosomal subunit, ubiquinol-
cytochrome-c reductase activity, and RNA polymerase
was increased significantly (Table 2). The up-regulation
of genes in these groups may be due to the need of large
quantities of protein synthesis in the pennaceous portion
of the body feather.
Genes involved in skeletal system development, tube

development, melanin biosynthetic process, regulation
of RNA metabolic process, drug metabolism, respira-
tory tube development, and lytic vacuole were
expressed significantly higher in early-grow flight fea-
ther (Table 2). The genes in melanin biosynthetic
process (TYR, TYRP1, PMEL) were up-regulated sim-
ply because the color is usually darker in the flight
feather of this breed than in the contour feather of
both TCC_L2 and white leghorn chickens. Tyrosinase
(TYR) and tyrosinase-related protein 1 (TYRP1) are
known to be involved in the feather pigment pattern
formation [38]. TYR and TYRP1 are found to be asso-
ciated with melanic plumage color differences in
chickens, Korean quails (Coturnix coturnix), ducks,
geese, and pigeons [39–43]. The mutation of premela-
nosome protein (PEML) can cause hypopigmentation
in chickens [44].



Fig. 4 Gene expression level in five comparisons. X-axis and Y-axis plots gene expression counts after FPKM quantification in comparison.
(a) cEB vs. cLB, (b) cEB vs. cEF, (c) cEF vs. cMF, and (d) cMF vs. cLF. The red points indicate significantly differentially expressed genes
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Several genes involved in tissue morphogenesis
(PRKAR1A, LMO4, TP63, TWSG1, JAG1, FGFR2,
ACVR1, CA2) and in the regulation of developmental
process (SMAD5, JAG1, FGFR2, HIF1A, ACVR1,
WNT7B) were upregulated in distal flight feather
(Table 2). Jagged-1 (JAG1), a Notch ligand, is involved
in the orientation of feather bud elongation [45]. Three
fibroblast growth factor (FGF) receptor genes, FGFR1,
FGFR2 and FGFR3, have been suggested to be involved
in feather morphogenesis [46].

Transcriptomic comparison between distal and proximal
parts of flight feather
Toward the proximal end, the rachis gradually increases
in width and eventually turns into the calamus. Among
the 1,167 DEGs, 534 genes were up-regulated and 633
genes were down-regulated in the proximal flight
feather in comparison to the distal flight feather (Fig. 4c,
Additional file 8: Table S7). IPA canonical pathway
analysis revealed several DEGs that were involved in
WNT/β-catenin Signaling (JUN, DKK3, WNT5A,
CDH3, CD44, CDH5, PPARD, WNT2B, SFRP4, SOX14,
SFRP2, PPP2R2B, SOX7, FRZB, RARB) and in TGF-β
Signaling (JUN, INHBA, SMAD2, SMAD1, RUNX3,
MAPK11, INHBB) (Fig. 5, Additional file 12: Table
S11). Other pathways basically overlap with the WNT/
β-catenin signaling or the TGF-β signaling pathway.
Nine genes involved in skeletal system development

(MGP, GLI1, WWOX, IGFBP5, GJA5, SHH, SOX14,
SMAD1, CBFB) were increased in expression in the
early-grow (distal) flight feather (Table 2). BMP4 and
matrix gla protein (MGP) are considered an activating
and an inhibitory morphogen, respectively, and their
interaction is important for vascular branching [47].
MGP may promote rachis and barb branching in feather.
SHH is a secreted protein expressed in the epidermis
that is involved in the mitogenic and morphogenetic
processes throughout feather development [32, 48–52].
The interactions between SHH and BMP2 signaling
during feather barb ridge morphogenesis may be critical



Fig. 5 IPA Canonical Pathway analysis of differentially expressed genes. (a) cEB vs. cLB, (b) cEB vs. cEF, (c) cEF vs. cMF, and (d) cMF vs. cLF
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for the initial formation of a meristic pattern of barb
ridges and the variation in barb morphogenesis in feathers
[53]. The activation of the SHH signaling pathway leads
to the expression of the transcription factor glioma-
associated oncogene 1 (GLI1), a SHH-targeted mediator
[54]. Insulin-like growth factor binding protein 5



Table 1 Predicted upstream regulators from IPA

Comparison Upstream
regulator

Molecule type p-value of
overlap

A BMP2 growth factor 4.00E-02

B E2F1 transcription regulator 2.95E-03

let-7 microRNA 2.72E-02

RB1 transcription regulator 2.72E-02

C SP1 transcription regulator 1.15E-03

CALR transcription regulator 1.75E-03

HGF growth factor 1.75E-03

RELA transcription regulator 4.67E-03

ELF3 transcription regulator 5.10E-03

CREB1 transcription regulator 5.10E-03

PPARG ligand-dependent
nuclear receptor

9.92E-03

PRKCA kinase 9.92E-03

TGFB1 growth factor 1.45E-02

let-7 microRNA 1.61E-02

NFKB1 transcription regulator 1.61E-02

ACTG1 other 1.61E-02

HNRNPA2B1 other 3.04E-02

HDAC6 transcription regulator 3.20E-02

CD9 other 4.14E-02

NCOR1 transcription regulator 4.19E-02

TRIM16 transcription regulator 4.19E-02

GLI1 transcription regulator 4.19E-02

PRKCI kinase 4.19E-02

EED transcription regulator 4.19E-02

CD44 enzyme 4.19E-02

RFXAP transcription regulator 4.19E-02

PTGER4 g-protein coupled receptor 4.19E-02

HAS2 enzyme 4.19E-02

DUSP1 phosphatase 4.19E-02

MECP2 transcription regulator 4.19E-02

DNMT3A enzyme 4.19E-02

SPHK1 kinase 4.19E-02

CTSB peptidase 4.19E-02

TP63 transcription regulator 4.19E-02

TUBB3 other 4.19E-02

EZH2 transcription regulator 4.19E-02

MMP2 peptidase 4.19E-02

JAK2 kinase 4.19E-02

F2 peptidase 4.19E-02

SIN3A transcription regulator 4.19E-02

BAG3 other 4.19E-02

PRKD1 kinase 4.19E-02

PRC1 other 4.19E-02

Table 1 Predicted upstream regulators from IPA (Continued)

RCOR1 transcription regulator 4.19E-02

RFX5 transcription regulator 4.19E-02

IL1B cytokine 4.29E-02

D let-7 microrna 3.06E-03

F2 peptidase 1.78E-02

SP1 transcription regulator 1.86E-02

HNRNPA2B1 other 2.13E-02

NR3C1 ligand-dependent
nuclear receptor

3.20E-02

ZNF148 transcription regulator 3.54E-02

NEUROD1 transcription regulator 3.54E-02

CALR transcription regulator 3.54E-02

EGR1 transcription regulator 3.54E-02

MAPK7 kinase 3.54E-02

ATF2 transcription regulator 3.54E-02

IFNG cytokine 4.88E-02

Ng et al. BMC Genomics  (2015) 16:756 Page 8 of 16
(IGFBP5) is expressed in human hair follicle dermal
papilla and plays a specific role in the local modulation of
IGF action during the hair growth cycle [55].
Nine genes involved in tube development (WNT5A,

LMO4, LIPA, SHH, EDNRA, RARB, GJA5, CRH, GLI1)
were increased in expression in the early-growth flight
feather (Table 2). The expression levels of WNT ligands
such as WNT5A/WNT5B/WNT6 were found to be high
in the feather epithelium and pulp compared to dermal
papillae [56]. WNT5A is involved in non-canonical
pathways but its downstream signaling events are not
known yet. LIM domain-only protein 4 (LMO4) is
expressed in mouse hair follicles, especially in the
sebaceous glands, undifferentiated bulb cells, and the
outer epithelial root sheath [57]. Retinoic acid receptor
beta (RARB) is a receptor of retinoic acid which regu-
lates cell proliferation, differentiation, and morphogen-
esis and is involved in the feather-bud formation [58].
Gap junction alpha-5 protein (GJA5), also known as
connexin 40 (CX40), is an integral membrane protein
that oligomerizes to form intercellular channels that are
clustered at gap junctions which are present in support-
ive cells located in the vicinity of barbule cells [59].
Corticotropin-releasing hormone (CRH) peptides modu-
late human hair growth/cycling [60, 61].
Many genes involved in extracellular region and cell

adhesion were up-regulated significantly in the middle-
grow flight feather (Table 2). Cell adhesion molecules
(CAMs) may regulate feather morphogenesis by con-
straining cell motion and forming borders. Several
adhesion molecules, including L-CAM, N-CAM,



Table 2 Functional enrichment analysis of the DEGs in different transcriptomes by the DAVID functional annotation clustering tool

Comparison Tissue Up-regulated Representative
annotation terms

Enrichment
score

Genes

A cEB vs. cLB cEB Translation 11.57 COG8, RPL22, HARS, RPL19, RPL10A, YARS, DENR,
RPS14, RPS4, MRPL16, RPL13, MRPL23, RPL30, MRPL2,
RPL18A, RPS8, RPL37A, RPSA, MRPL24, RPS15, EEF1D,
RPLP1, RPL8, RPS7, RPL31, RPL17, MRPS12, RPLP0, RPS28

Oxidative phosphorylation 2.99 NDUFA2, UQCR11, NDUFA8, ATP5A1W, NDUFB6, NDUFS5,
PPA1, COX4I1, NDUFAB1, UQCRQ, COX6A1, COX15, ATP5H,
UQCR10, NDUFB3, NDUFA1, NDUFS6, COX8A, COX5A,
ATP5O, UQCRH, COX6C, NDUFA11

Hydrogen ion transmembrane
transporter activity

2.78 ATP5A1W, ATP5O, COX4I1, COX6C, COX5A, LOC770937,
UQCRH, UQCRQ

Pyrimidine metabolism 1.61 NME2, ITPA, POLR2L, POLR2H, POLR1C, CANT1,
POLR3H, RPB6

Contractile fiber part 1.37 MYL4, TNNC1, HSPB1, CRYAB

Ribosomal subunit 1.24 RPL19, RPS14, RPSA, RPS15, RPL17, MRPS12

Peptidyl-prolyl cis-trans
isomerase activity

1.22 PPIB, FKBP25, FKBP1B

Inorganic cation transmembrane
transporter activity

1.10 ATP5A1W, COX4I1, UQCRQ, UQCR10, RHBG, COX5A,
ATP5O, UQCRH, COX6C

cLB Amino acid transmembrane
transporter activity

2.33 SLC38A2, SLC6A6, SLC7A5, SLC7A11

Transmembrane 1.72 ATP1B3, ELOVL6, ST8SIA5, BMPR2, EGFR, FZD10, GJA1,
ITGA6, ITGAV, LAMP2, NRP1, SLC2A1, SLC38A2, SLC6A6,
SLC7A5, SCD, TSPAN18, TFRC, TMEM41B, TYR

Lysosome 1.64 LAPTM5, CTSD, ARL8A, LAMP2

Tube development 1.43 SP3, NRP1, EPAS1, TP63, BMPR-II, BMPR1A

Enzyme linked receptor
protein signaling pathway

1.33 SMAD5, MADH2, BMPR1A, NRP1, BMPR-II, EGFR

Carboxylic acid biosynthetic process 1.22 SCD, QKI, ELOVL6, CBS

Plasma membrane 1.15 LAPTM5, BMPR1A, ITGAV, TJP1, SLC2A1, SLC6A6, BMPR-II,
SLC38A2, LAMP2, ITGA6, QKI, EGFR, GJA1, PANX1, DSC1

B cEB vs. cEF cEB Translation 20.68 RPL22, HARS, RPL35, RPL19, MRPL17, RPL10A, RPL27,
RPL26, YARS, DENR, RPS14, RPL6, RPS4, RPS24, MRPL16,
EF1A, RPL27A, RPL13, MRPL23, MRPS11, RPL4, RPS27A,
EIF3J, RPL30, MRPL2, RPL18A, RPS8, RPL14, RPSA, RPL3,
MRPL24, RPL37, RPS15, EEF1D, RPLP1, RPL8, RPS7, RPL31,
RPS3, MRPS12, RPLP0, RPS28, COG8, RPL17

Oxidative phosphorylation 3.83 NDUFA2, UQCR11, NDUFA8, ATP5A1W, NDUFB6, NDUFS5,
COX4I1, NDUFAB1, COX6A1, COX15, ATP5H, UQCR10,
NDUFB3, NDUFA1, NDUFB5, NDUFS6, COX5A, UQCRH,
COX6C, ATP5B, ATP5G1, UQCRQ, COX7B, COX8A,
ATP5O, NDUFA11

Ribosomal subunit 3.39 RPL19, RPL26, RPS14, RPS27A, RPSA, RPS15, RPS3, DAP3,
MRPS12, RPL17

Pyrimidine metabolism 2.07 POLR2C, NME2, ITPA, POLR2L, POLR1D, POLR2H,
POLR1C, CANT1, RPB6, POLR2I

Ubiquinol-cytochrome-c
reductase activity

2.00 UQCRH, UQCR10, UQCRQ

RNA polymerase 1.36 POLR2H, RPB6, POLR1D, POLR2I, POLR1C, POLR2L, POLR2C

Transmembrance 2.76 ATP1A1, ATP1B3, EPHB6, FAT, GPR177, ST8SIA5, ACVR1,
CXCR7, EGFR, FGFR2, FGFR3, FZD10,GJA1, ITGA6, ITGAV,
LAMP2, LAPTM4A, PTPLAD1, SLC22A5, SLC16A9, SLC2A1,
SLC26A5, SLC39A13, SLC6A6, SLC7A5, SCD, SDC3, TSPAN18,
TMEM121, TMEM175, TMEM41B, TYR, TYRP1
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Table 2 Functional enrichment analysis of the DEGs in different transcriptomes by the DAVID functional annotation clustering tool
(Continued)

cEF Tissue morphogenesis 1.59 PRKAR1A, LMO4, TP63, TWSG1, JAG1, FGFR2, ACVR1, CA2

Regulation of ossification 1.58 SMAD5, JAG1, FGFR2, HIF1A, ACVR1, WNT7B

Ossification 1.28 SMAD5, TWSG1, FGFR2, MGP

Carboxylic acid transport 1.25 SLC7A5, SLC6A6, SLC7A11, PLIN2

Glycoprotein metabolic process 1.18 ST8SIA5, B3GNT5, B3GALNT1, HIF1A, B3GNT9

Transmembrane receptor
protein serine/threonine
kinase signaling pathway

1.13 SMAD5, TWSG1, ACVR1, MADH2

Enzyme linked receptor
protein signaling pathway

1.13 EPHB6, JAK1, SMAD2, ACVR1, EGFR, FGFR2, FGFR3,
RHOQ, SMAD5, TWSG1,

C cEF vs. cMF cEF Skeletal system development 2.81 MGP, GLI1, WWOX, IGFBP5, GJA5, SHH, SOX14,
SMAD1, CBFB

Signal peptide 2.29 KITLG, NELL2, ADCYAP1, AGRN, APOA1, CTSD, CHRNA4,
CRH, FMOD, FZD10, FRZB, IGFBP2, MGP, MXRA8, NFASC,
NPY, PON2, PLTP, SFRP2, SEMA3A, SILV, SHH, TTR, TSKU,
TYR, TYRP1, KIT

Tube development 1.62 WNT5A, LMO4, LIPA, SHH, EDNRA, RARB, GJA5, CRH, GLI1

Melanin biosynthetic process 1.53 TYR, TYRP1, PMEL

Drug metabolism 1.48 GSTO1, GSTA, MGST2, ALDH3B1

Lytic vacuole 1.38 CTSD, NAGA, CTSL2, SLC48A1

Developmental protein 1.38 LFNG, BASP1, FZD10, FRZB, GLI1, MGP, MSX1, SFRP2,
SEMA3A, SHH, TSKU, WNT2B, WNT5A

Regulation of transcription,
DNA-dependent

1.26 PKNOX2, POU2F3, SMAD1, SMAD2, SOX10, SOX14,
AGRN, CBFB, DLX6, FOXI3, GLI1, HMGA2, MED22,
MSX1, RHOQ, RBBP7, RARB, LOC425662, IRX5, SHH,
THRB, TCEA2, TFAP2B, MYCL1, MYCN

Respiratory tube development 1.23 WNT5A, LIPA, SHH, CRH, GLI1

cMF Extracellular region 7.81 HBEGF, COL3A1, STC2, CTGF, SS2, FN1, MMP2, ANXA2,
QSOX1, SPARC, LAMC2, ST6GAL1, DKK3, ADIPOQ, ADM,
COL6A1, GPC4, COL6A2, JSC, CD44, MDK, CYR61, SERPINI1,
COL1A2, EREG, THBS2, LUM, IGFBP7, APOLD1, EPDR1,
PLA2G12A, INHBA, LGALS1, TIMP3, FBLN1, LAMA3, COL8A1,
ADAMTS1, CD109, NOV, COL4A1, COL4A2, OSF-2, AVD,
ENSGALG00000016682, ENSGALG00000011930

Carbohydrate binding 2.99 MRC2, HBEGF, CTGF, FN1, LAMC2, CD44, MDK, THBS2,
CLEC3B, LGALS1, OSF-2

Signal peptide 2.62 CD3E, GFRA4, K123, TIMP3, CDH5, COL1A2, COL3A1,
COL6A1, COL6A2, COL8A1, CTGF, CYR61, DKK3, FBLN1,
INHBA, ITGA6, LEPREL1, LUM, MMP2, LOC769899,
MDK, PTGS2, QSOX1, SPARC, SERPINI1, SDK2, NOV, THBS2

Cell adhesion 2.25 ITGB3, PPARD, CTGF, FN1, SDK2, CDH5, COL6A1, COL6A2,
CD44, ITGA6, THBS2, EPDR1, COL8A1, EDIL3, OSF-2

Vasculature development 2.17 CTGF, PRRX1, MMP2, ANXA2, CDH5, CYR61, CAV1,
COL1A2, EPAS1, MYH9

Collagen 2.12 ADIPOQ, COL1A2, COL3A1, COL4A1, COL6A1,
COL6A2, COL8A1,

Phospholipid binding 1.50 ANXA1, ANXA2, ANXA5

Vascular smooth muscle
contraction

1.85 ADRA1A, ITPR3, PLA2G4A, ACTG2, ARHGEF12, PLCB4,
PLA2G12A, ITPR2, PLA2G10, RAMP2, PLA2G4C

Cell-substrate adhesion 1.40 ITGB3, PPARD, CTGF, FN1, ITGA6, EPDR1

Regulation of cell growth 1.34 CTGF, BCL6, CYR61, IGFBP7, INHBA, NOV

Cell surface 1.03 ITGB3, HSPB1, II, CD3E, CD44, MDK, ITGA6
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Table 2 Functional enrichment analysis of the DEGs in different transcriptomes by the DAVID functional annotation clustering tool
(Continued)

D cMF vs. cLF cMF Secondary metabolic process 2.33 PMEL, TYRP1, ALDOB, TYR

Organic acid transport 2.16 SLC6A6, CD36, PLIN2, OCA2

Signal peptide 1.53 C1ORF187, FZD10, GSN, LY75, LOC769899, MDK, NPY,
OVM, PLTP, QSOX1, SOSTDC1, SILV, SHH, TYR, TYRP1, KIT

cLF Extracellular region part 5.09 HBEGF, LAMB3, COL5A2, COL5A1, CTGF, FN1, SPARC,
LAMC2, ADIPOQ, OSTN, LAMB1, THBS1, INHBA, LAMA3,
COL12A1, COL4A1, OSF-2, MMP27, COL1A1, OVOS2

Structural molecule activity 3.43 LOC395532, COL4A1, COL5A1, COL5A2, COL7A1,
LOC395906, NEFL, RPL36, LOC771066, THBS1

Blood vessel development 2.47 THY1, CDH2, CAV1, COL5A1, CTGF, THBS1

Glycoprotein 2.09 ST6GALNAC2, ST6GAL1, THY1, ADORA1, ALPL,
LOC395532, CDH2, CHST3, ENSGALG00000015908,
FN1, HSP90B1, INHBA, LAMB1, NTM, P4HA2, SPARC,
SERPINH1, MOXD1

Regulation of cell migration 1.98 THY1, ADORA1, HBEGF, THBS1, LAMA3

Calcium binding 1.31 ACTN1, CDH2, CALM1, SPARC, TNNC1

Glycoprotein
biosynthetic process

1.31 ST6GALNAC2, ST3GAL2, ST6GAL1, B3GNT2, GALNT1, CHST3

Cell adhesion 1.30 THY1, NTM, COL5A1, COL7A1,CTGF, FN1, LAMB1,
THBS1, CDH2, DSG2, EDIL3, POSTN

Negative regulation
of molecular function

1.26 THY1, ENSGALG00000014471, CAV1, HSPA5

Endoplasmic reticulum 1.22 HSPA5, MOXD1, ITPR3, ADIPOQ, P4HA2, THY1,
CAV1, SERPINH1, HSP90B1, DUOXA1

Identical protein binding 1.20 TNNC1, HSPB1, ADIPOQ, INHBA, CAT, MTMR2

Regulation of cellular
protein metabolic process

1.11 ADIPOQ, PACSIN3, CAV1, THBS1NN BDKRB2

The genes were analyzed by the Functional Annotation Clustering Tool. The top annotation clusters that had group enrichment scores greater than 1 were listed.
The representative biology terms associated with the top annotation clusters are manually summarized
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integrin, tenascin, as well as proteoglycan, are involved
in feather development [62–64]. Tenascin-C has been
shown to evolve rapidly in avian lineages [29].
Many collagen genes were up-regulated in the middle-

grow feather portion compared to the early-growth flight
feather portion (Table 2). The orientation of collagen
fibers in the feather buds may promote feather growth by
creating a gradient of stiffness, thus triggering the pressure
sensitive growth factors [65]. Collagen types I and III, and
fibronectin are known to be involved in feather morpho-
genesis in the chick embryo [66]. Matrix metalloprotein-
ases (MMPs) and their inhibitors are important in tissue
development remodeling for the formation of feather folli-
cles such as epithelium invagination and mesenchymal cell
proliferation [67]. Several collagens and a MMP expressed
in feathers have been found to evolve rapidly in a previous
study [29]. Dickkopf-related protein 2 (DKK2), which
presumably encodes a WNT signaling inhibitor, regulates
feather regeneration in the dermal papillae [56]. The ex-
pression of CD44, which is also known to evolve rapidly
in avian lineages [29], correlates with the onset of kera-
tinocyte stratification and mesenchymal maturation into
fibrous dermis in fetal human skin [68]. Tissue inhibitor
of metalloproteinases-3 (TIMP3) is expressed in epithelial
outer root sheath cells of growing hair follicles of human
fetus [69]. Cysteine-rich secretory protein 1 (CRISP1) is
expressed in murine hair follicles and down-regulated in
mice overexpressing a homeobox gene HOXC13 [70].
State-dependent signaling by Cav1.2 regulates hair

follicle stem cell function by regulating the production of
the bulge-derived BMP inhibitor follistatin-like1 (FSTL1),
derepressing stem cell quiescence [71, 72]. Expression of
muscle-related genes are known to be enriched in the
feather dermal papilla, including ACTG2 (smooth muscle
actin, gamma 2), ACTA2 (smooth muscle actin, alpha 2),
Desmin, MYH11 (myosin heavy chain11), MYL4 (myosin
light chain4), MYL9 (myosin light chain 9), MYLK (myosin
light chain kinase), etc. [56]. Our results showed that
genes involved in smooth muscle contraction, such
as ADRA1A, ITPR3, PLA2G4A, ACTG2, ARHGEF12,
PLCB4, PLA2G12A, ITPR2, PLA2G10, RAMP2, and
PLA2G4C are differentially expressed. CLR/RAMP2-over-
expressing mice revealed a defined phenotype with thin-
ning of the hair during postnatal development [73].
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Transcriptomic comparison between proximal flight
feather and calamus
Among the 702 DEGs, 263 genes were up-regulated and
404 genes were down-regulated in the proximal flight
feather in comparison to the calamus (Fig. 4d, Additional
file 9: Table S8). IPA canonical pathway analysis showed
that several genes involved in the TGF-β signaling
(INHBA, RUNX3, PMEPA1, RUNX2, INHBB), the Sertoli
cell-Sertoli cell junction signaling (TUBB3, TUBA1B,
CLDN4, TJP3, JAM3, ACTN1, MTMR2) and the germ
cell-Sertoli cell junction (CDH2, TUBB3, GSN, TUBA1B,
ACTN1, MTMR2) signaling were differentially expressed.
Other pathways basically overlap with the TGF-β signaling
pathway (Fig. 5, Additional file 13: Table S12).
Compared to the close proximal part of the flight

feather, the calamus expressed significantly more genes
involved in extracellular matrix and cell adhesion (Table 2).
The calamus can basically be seen as the rachis of the
flight feather. The genes involved in extracellular matrix
and cell adhesion may be required for making a tougher
feather structure.

The molecular mechanism of feather branching
morphogenesis
Major signaling pathways are involved in feather branch-
ing morphogenesis, including the Wnt/β-catenin, SHH/
BMP, and Notch pathways [11, 18, 19, 45, 48, 56, 74, 75].
Besides feathers, epithelial tissues such as the vascular
system, kidney, lung, and mammary gland arise through
branching morphogenesis of a pre-existing epithelial
structure [13, 76–78]. Common morphological stages and
a similar set of developmental regulations are shared by
these tissues. The spatial and temporal controls of branch-
ing are controlled by developmental decisions requiring
regulation of cell proliferation, apoptosis, invasiveness,
and cell motility. Similar molecular mechanisms could
exist for the epithelial branching program, even though
the feather is an evolutionary novel tissue. Key branching
morphogenetic molecules include central signaling mole-
cules such as BMPs, TGF-β, FGF, and MMPs [13, 76–78].
Our study supports the previous findings that temporal
and spatial variation of BMP signals are critical for
generating branching differences between pennaceous
and plumulaceous body feathers because genes in-
volved in BMP signaling were significantly upregu-
lated in the plumulaceous portions.
Genes involved in axon guidance (MYL4, CDK5,

SEMA4B, PRKAR1A, NFATC3, PLXNA1, PLXNB2,
ARPC4, NRP1, MAPK1, WNT6, PRKCI, RASA1, ECE2,
SEMA5A) from IPA pathway analysis (Fig. 5), especially
those in semaphorin signaling, were differentially
expressed between the pennaceous and plumulaceous
portions of body feather. This observation suggests that
they are recruited in feather development and play a
critical role in controlling the morphological differ-
ences in feathers, and perhaps are involved in chan-
ging the extracellular environment for signals that
instruct the cell of the barb plate which direction to
grow by affecting the cytoskeleton. The differential
expression profile of these genes among different fea-
ther types suggests that they are involved in critical
guidance cues during feather morphogenesis, although
functional studies remain to be demonstrated.
Genes involved in Sertoli cell-Sertoli cell junction

signaling and germ cell-Sertoli cell junction are recruited
in feather development. Differentiating barb/barbule
cells have been found to have many adhesion junctions,
some gap junctions and fewer tight junctions during
early stages of feather development [59]. The cytological
details on the type of cell junctions present in barb/
barbules of feathers are poorly known. Our study pro-
vides the data to characterize the types of cell junctions,
and their molecular nature that are critical in feather
morphogenesis.
Although the hair and the feather are not homologous,

they share many pathways. Hair follicle morphogenesis
also depends on WNT, SHH, NOTCH, BMP and other
signaling pathways that interact between epithelial and
mesenchymal cells. However, as hairs have no branching
structures, the genes that are involved in feather mor-
phogenesis but not in hair development may participate
in generating branching structures. A detailed compari-
son of transcriptomes between feathers and hairs may
reveal the molecular mechanism shared and distinct be-
tween these two types of keratinized skin appendages.
The genes involved in vessel and tube development are
differentially expressed in feather epithelium, suggesting
a role in regulating the morphology of feather branching.
We found that genes involved in developing the vessel,
tube and kidney were enriched. They may have been co-
opted to develop an evolutionary novelty. The origin
and diversification of a novel structure may not require
the evolution of new gene or gene duplication because
existing genes can be recruited to have new expression
pattern and regulation. The genes with similar functions
can be reused to construct a new network.

Conclusions
This study has significantly increased our understanding
of the expression profiles of feather related genes. We
examined the expression profiles of genes associated with
the development of feather structure and compared the
gene expression patterns in different types of feathers and
different portions of a feather to advance our understand-
ing of the molecular mechanisms of feather growth and
the molecular basis of variation in feather structure. Our
results are a valuable resource for understanding the
molecular mechanisms of avian feather development. This
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study produced abundant data for the analysis of gene
expression during feather morphogenesis. Morphotype-
specifically expressed genes were identified from five
zones of feather filament epithelia. Some identified genes
may be associated with the growth control during feather
regeneration, the formation of special branching struc-
tures, or barb differentiation themselves. The present
study provides a basis for future study of the complex mo-
lecular and cellular events during feather development.

Methods
Animals
All the animals used in this study were processed fol-
lowing the approved protocol of Institutional Animal
Care and Use Committees of the National Chung Hsing
University (Taichung, Taiwan). For total RNA extrac-
tion, we used the Taiwan County Chicken (TCC_L2)
breed chicken for wing flight feathers and white leghorn
for body contour feathers. TCC_L2 and white leghorn
chicken contour feathers are different in color but highly
similar in morphology and structure.

Total RNA Isolation and RNA-seq
We collected regenerating pennaceous and plumulac-
eous portions of body contour feathers, the distal and
proximal portions of primary flight feathers, and the
calamus of primary flight feathers. Total RNA was
isolated from early or late grow fresh feather epithelial
tissues corresponding, respectively, to the distal and
proximal part of a feather (Additional file 1: Figure S3),
which was dissected from the follicle tissue and sepa-
rated from the mesenchyme in Calcium-Magnesium
Free Saline (CMFS 2X) on ice [79]. White leghorn
chickens were used for body contour feathers to avoid
melanin contamination, which is difficult to remove and
can inhibit essential enzymatic reactions for RNA-seq
[80, 81]. RNA-seq and analysis of paired-end reads were
performed as described in Ng et al. 2014 [28]. Reads
were mapped onto the chicken genome assembly ICGSC
Gallus_gallus-4.0 (GCA_000002315.2).

Validation by real-time quantitative PCR
A total of 2 μg RNA of each sample was reverse
transcribed with MultiScribe Reverse Transcriptase
(Thermo Fisher Scientific, Waltham, MA) into cDNA
for both Reverse Transcription PCR (RT-PCR) and
Quantitative Reverse Transcription PCR (qRT-PCR) re-
actions. Total RNA was incubated with RT enzymes at
25 °C for 10 min prior to the RT reaction. RT reactions
were performed at 37 °C for 2 h followed by the inacti-
vation of RT enzyme at 85 °C for 10 s. For RT-PCR, 1 μl
of 10× diluted cDNA was amplified by Fast Start Taq
DNA polymerase (Roche Applied Science, Penzberg,
Germany) in a total of 10 ul reaction. For RT-qPCR,
1 μl of 10× diluted cDNA products was quantified
with 2 × SYBR Green Master Mix (Kapa Biosystems,
Wilmington, MA) in a total of 10 ul reaction and
performed on a Roche LightCycler 480 Instrument II.
All the data were analyzed by the HTC1 software
(Roche Applied Science). The 2-ΔΔCt method was used
to calculate relative expression levels [82]. The cycling
parameters of RT-qPCR were as follows: 95 °C for
3 min, then 40 cycles of 95 °C for 10 s, and anneal-
ing for 20 s. Gene names and primer sequences are
shown in Additional file 3: Table S2. Each sample was
analyzed in duplicates, and gene expression levels
were normalized against the corresponding TATA-
binding protein (TBP) expression level.

Multivariate analyses
Prior to statistical analyses performed with R v2.15.3 (R
Development Core Team 2011), raw read counts were
normalized by Fragments Per Kilobase of transcript per
Million mapped reads (FPKM). Principal component
analysis (PCA) was performed on the covariance matrix f
using a custom R script based on the “prcomp” R package.

Identification of differentially expressed genes
We used the non-parametric method to identify
differentially expressed genes (DEGs) between two
samples [83]. Here, we set the q value (differentially
expression probability) in the method to be 0.75 (this
value is equivalent to an odd of 3:1, i.e., the gene is
three times more likely to be differentially expressed
than it is not) and require at least a 2-fold change in
FPKM between the two samples.

Gene functional annotation, canonical pathway and
upstream regulator analyses
Functional annotations of gene loci were compared with
the complete genome using annotations from the
Database for Annotation, Visualization, and Discovery
(DAVID), which uses fuzzy clustering to group genes into
functionally related classes based on the similarity of their
annotations [84, 85]. Pathway analyses of differentially-
expressed genes were carried out using the Ingenuity
Pathways Analysis software (IPA; Ingenuity Systems,
www.ingenuity.com). Each gene identifier was mapped to
its corresponding gene object in the Ingenuity Pathways
Knowledge Base. A canonical pathways analysis was gen-
erated to identify the pathways from the IPA library that
were most significant. Fischer’s exact test was employed to
calculate the p-value which determines the probability
that each biological function or/and canonical pathway is
due to chance alone. The Upstream Analysis section of
the core analysis was used to determine which upstream
regulators were associated with the observed differently
expressed genes.

http://www.ingenuity.com
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Availability of supporting data
The full data sets have been submitted to NCBI Sequence
Read Archive (SRA) under accession nos. SRX528281,
SRX528834, SRX528843, SRX529337, SRX529339,
SRX529353-SRX529362. Bioproject: PRJNA245063.
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Additional file 1: Figure S1. The feather samples used in this study.
Figure S2. qPCR validation of 10 genes with biological replicates.
Figure S3. The feather samples used for RNA extraction. (PDF 270 kb)

Additional file 2: Table S1. Summary of the 15 feather epithelial
transcriptomes. (XLSX 15 kb)

Additional file 3: Table S2. Gene name and primer sequences used in
RNA-seq validation. (XLSX 12 kb)

Additional file 4: Table S3. Transcriptome Expression Data. Table of
mapped reads to Galgal4 transcripts for all 15 data sets. FPKM (Fragments
per kilobase of exon per million fragments mapped): normalized transcript
abundance values for each gene in the indicated tissues. (CSV 1314 kb)

Additional file 5: Table S4. Positively selected and/or rapid evolving
genes in avian lineages [29] that are expressed in all feather samples.
(XLSX 11 kb)

Additional file 6: Table S5. cEB vs. cLB differentially expressed gene set
(shown in FPKM and fold change). (XLSX 81 kb)

Additional file 7: Table S6. cEB vs. cEF differentially expressed gene set
(shown in FPKM and fold change). (XLSX 94 kb)

Additional file 8: Table S7. cEF vs. cMF differentially expressed gene
set (shown in FPKM and fold change). (XLSX 86 kb)

Additional file 9: Table S8. cMF vs. cLF differentially expressed gene
set (shown in FPKM and fold change). (XLSX 62 kb)

Additional file 10: Table S9. Canonical pathways for cEB vs. cLB
differentially expressed gene set. (XLS 50 kb)

Additional file 11: Table S10. Canonical pathways for cEB vs. cEF
differentially expressed gene set. (XLS 35 kb)

Additional file 12: Table S11. Canonical pathways for cEF vs. cMF
differentially expressed gene set. (XLS 46 kb)

Additional file 13: Table S12. Canonical pathways for cMF vs. cLF
differentially expressed gene set. (XLS 30 kb)
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