28 research outputs found

    Self‐assembly Mechanism and Chiral Transfer in CuO Superstructures

    Get PDF
    Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self‐assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time‐resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full‐field electro‐dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule‐guided self‐assembly can be specifically designed to follow a bottom‐up chiral transfer pathway.National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809Helmholtz-OCPC Postdoc ProgramPeer Reviewe

    Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline α-cyclodextrin domains

    Get PDF
    Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking

    Thermosensitive Cu2O-PNIPAM core-shell nanoreactors with tunable photocatalytic activity

    Get PDF
    We report a facile and novel method for the fabrication of Cu2O@PNIPAM core-shell nanoreactors using Cu2O nanocubes as the core. The PNIPAM shell not only effectively protects the Cu2O nanocubes from oxidation, but also improves the colloidal stability of the system. The Cu2O@PNIPAM core-shell microgels can work efficiently as photocatalyst for the decomposition of methyl orange under visible light. A significant enhancement in the catalytic activity has been observed for the core-shell microgels compared with the pure Cu2O nanocubes. Most importantly, the photocatalytic activity of the Cu2O nanocubes can be further tuned by the thermosensitive PNIPAM shell, as rationalized by our recent theory.Comment: 8 pages, 6 figures (Supporting Information included: 11 pages, 10 figures

    Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO2 electroreduction

    Get PDF
    Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs’ internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∌ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products

    Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO2 electroreduction

    Get PDF
    Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs’ internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∌ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products

    Crosslinked 1,2,4-triazolium-type poly(ionic liquid) nanoparticles

    No full text
    In this work we studied covalently crosslinked poly(ionic liquid) nanoparticles synthesized via aqueous dispersion polymerization of 1,2,4-triazolium ionic liquid monomers in the presence of a dication crosslinker. Compared to their non-crosslinked counterparts, the nanoparticles showed improved structural integrity in organic media. Assisted by cryogenic electron microscopy, these nanoparticles were analyzed in detail and found to present vastly diverse shapes and highly ordered inner mesostructures. Upon altering the length of the alkyl substituents on the triazolium cation from dodecyl to tetradecyl and hexadecyl, a shape transformation from elongated “nanoworms” to a mixture of “onion-like” and “wasp-like” nanoparticles was observed. Additionally, the size variation of these colloidal nanoparticles was investigated systematically by polymerizations at different concentrations of monomer, external added salt and crosslinking agent. Finally, the crosslinked poly(ionic liquid) nanoparticles were able to readily disperse multi-walled carbon nanotubes in water and organic media

    One-Pot Synthesis of Double Poly(Ionic Liquid) Block Copolymers by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly (CMRPISA) in Water

    No full text
    Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobaltmediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imidazolium monomers carrying distinct alkyl chains. The cobalt-mediated radical polymerization of N-vinyl-3-ethyl imidazolium bromide (VEtImBr) is first carried out until high conversion in water at 30 degrees C, using an alkyl bis(acetylacetonate) cobalt(III) adduct as initiator and controlling agent. The as-obtained hydrophilic poly(N-vinyl-3ethyl imidazolium bromide) (PVEtImBr) is then used as a macroinitiator for the CMR-PISA of N-vinyl-3-octyl imidazolium bromide (VOcImBr). Self-assembly of the amphiphilic PVEtImBr-b-PVOcImBr block copolymer, i.e., of PIL-b-PIL-type, rapidly takes place in water, forming polymer nanoparticles consisting of a hydrophilic PVEtImBr corona and a hydrophobic PVOcImBr core. Preliminary investigation into the effect of the size of the hydrophobic block on the dimension of the nanoparticles is also described

    Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials

    Get PDF
    Semiconducting carbon nitride polymers are used in metal-free photocatalysts and in opto-electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials – 2D layered poly(triazine imide) (PTI) and hydrogen-bonded melem hydrate – obtained from three low-melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI. The size of the anion plays a significant role in the formation process of the condensed carbon nitride polymers, and it suggests a strong templating effect. The smaller anions (chloride and bromide) become incorporated into triazine (C3N3)-based PTI frameworks. The larger iodide does not stabilize the formation of a triazine-based polymer, but instead it leads to the formation of the heptazine (C6N7)-based hydrogen-bonded melem hydrate as the main crystalline phase. Melem hydrate, obtained as single-crystalline powders, was compared with PTI in photocatalytic hydrogen evolution from water and in an OLED device. Further, the emergence of each carbon nitride species from its corresponding salt eutectic was rationalized via density functional theory calculations. This study highlights the possibilities to further tailor the properties of eutectic salt melts for ionothermal synthesis of organic functional materials.Peer Reviewe

    Ni- and Co-struvites: Revealing crystallization mechanisms and crystal engineering towards applicational use of transition metal phosphates

    Full text link
    Industrial and agricultural waste streams, which contain high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants. At the same time phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate, independently from each other. Investigations on the simultaneous removal of multiple components have been studied only to a limited extent. Here, we report the synthesis routes for Co- and Ni-struvites (NH4MPO4.6H2O, M = Ni2+, Co2+ ), which allow for P, ammonia and metal co precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites, as well as their crystal morphologies, and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the metal cation involved in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size, makes precipitation of metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially upcycled as precursor powders for electrochemical applications, which require transition metal phosphates (TMPs).Comment: Main manuscript 22 pages, SI 27 page
    corecore