26 research outputs found

    Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples

    Get PDF
    We present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens

    High-Resolution Quantitative Phase Imaging of Plasmonic Metasurfaces with Sensitivity down to a Single Nanoantenna

    Get PDF
    Optical metasurfaces have emerged as a new generation of building blocks for multifunctional optics. Design and realization of metasurface elements place everincreasing demands on accurate assessment of phase alterations introduced by complex nanoantenna arrays, a process referred to as quantitative phase imaging. Despite considerable effort, the widefield (nonscanning) phase imaging that would approach resolution limits of optical microscopy and indicate the response of a single nanoantenna still remains a challenge. Here, we report on a new strategy in incoherent holographic imaging of metasurfaces, in which unprecedented spatial resolution and light sensitivity are achieved by taking full advantage of the polarization selective control of light through the geometric (PancharatnamBerry) phase. The measurement is carried out in an inherently stable common-path setup composed of a standard optical microscope and an add-on imaging module. Phase information is acquired from the mutual coherence function attainable in records created in broadband spatially incoherent light by the self-interference of scattered and leakage light coming from the metasurface. In calibration measurements, the phase was mapped with the precision and spatial background noise better than 0.01 and 0.05 rad, respectively. The imaging excels at the high spatial resolution that was demonstrated experimentally by the precise amplitude and phase restoration of vortex metalenses and a metasurface grating with 833 lines/mm. Thanks to superior light sensitivity of the method, we demonstrated for the first time to our knowledge the widefield measurement of the phase altered by a single nanoantenna while maintaining the precision well below 0.15 rad

    Media 1: Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices

    No full text
    Originally published in Optics Express on 01 December 2014 (oe-22-24-30200

    >

    No full text

    Media 2: Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices

    No full text
    Originally published in Optics Express on 01 December 2014 (oe-22-24-30200

    Fourier-Domain Phase Retardation Vortex Measurement

    No full text
    Optical vortices have found a wide range of applications thanks to their helical phase topology allowing to carry the orbital angular momentum. In this work, self-interfering vortex beams are utilized in a new single-shot holographic method for the circular phase retardation measurement. The vortices carrying information about the phase retardation introduced between two orthogonal circular polarization modes are generated by the spin to orbital angular momentum conversion. The phase retardation is stored in off-axis holographic records acquired in a common-path setup using a geometric-phase grating. In the proposed method, the circular phase retardation is reconstructed in the Fourier domain, surpassing the measurement precision provided by methods restoring the retardation from the rotation of a Double-Helix Point Spread Function (DH PSF). The developed method can be adapted for application to polarimetry, orientation imaging and diagnostics of nano-emitters
    corecore