129 research outputs found

    Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe2As2: Effect of structural phase transition, structural relaxation and magnetic ordering

    Get PDF
    We have performed extensive ab initio calculations to investigate phonon dynamics and their possible role in superconductivity in BaFe2As2 and related systems. The calculations are compared to inelastic neutron scattering data that offer improved resolution over published data [Mittal et al., PRB 78 104514 (2008)], in particular at low frequencies. Effects of structural phase transition and full/partial structural relaxation, with and without magnetic ordering, on the calculated vibrational density of states are reported. Phonons are best reproduced using either the relaxed magnetic structures or the experimental cell. Several phonon branches are affected by the subtle structural changes associated with the transition from the tetragonal to the orthorhombic phase. Effects of phonon induced distortions on the electronic and spin structure have been investigated. It is found that for some vibrational modes, there is a significant change of the electronic distribution and spin populations around the Fermi level. A peak at 20 meV in the experimental data falls into the pseudo-gap region of the calculation. This was also the case reported in our recent work combined with an empirical parametric calculation [Mittal et al., PRB 78 104514 (2008)]. The combined evidence for the coupling of electronic and spin degrees of freedom with phonons is relevant to the current interest in superconductivity in BaFe2As2 and related systems

    Inelastic neutron scattering study of crystal field excitations of Nd<sup>3+</sup> in NdFeAsO

    Get PDF
    Inelastic neutron scattering experiments were performed to investigate the crystalline electric field (CEF) excitations of Nd3+ (J = 9/2) in the iron pnictide NdFeAsO. The crystal field level structures for both the high-temperature paramagnetic phase and the low-temperature antiferromagnetic phase of NdFeAsO are constructed. The variation of CEF excitations of Nd3+ reflects not only the change of local symmetry but also the change of magnetic ordered state of the Fe sublattice. By analyzing the crystal field interaction with a crystal field Hamiltonian, the crystal field parameters are obtained. It was found that the sign of the fourth and sixth-order crystal field parameters change upon the magnetic phase transition at 140 K, which may be due to the variation of exchange interactions between the 4f and conduction electrons.Comment: 5 pages, 4 figure

    Magneto-structural coupling and harmonic lattice dynamics in CaFe2_2As2_2 probed by M\"ossbauer spectroscopy

    Full text link
    In this paper we present detailed M\"ossbauer spectroscopy study of structural and magnetic properties of the undoped parent compound CaFe2_2As2_2 single crystal. By fitting the temperature dependence of the hyperfine magnetic field we show that the magneto-structural phase transition is clearly first-order in nature and we also deduced the compressibility of our sample to be 1.67×10−2 GPa−11.67\times10^{-2}\,GPa^{-1}. Within the Landau's theory of phase transition, we further argue that the observed phase transition may stem from the strong magneto-structural coupling effect. Temperature dependence of the Lamb-M\"ossbauer factor show that the paramagnetic phase and the antiferromagnetic phase exhibit similar lattice dynamics in high frequency modes with very close Debye temperatures, ΘD∼\Theta_D \sim270\,K.Comment: 6 pages,5 figures Accepted by J. Phys.: Condens. Matte

    Spin-Lattice Coupling in K0.8Fe1.6Se2 and KFe2Se2: Inelastic Neutron Scattering and ab-initio Phonon Calculations

    Get PDF
    We report measurements of the temperature dependence of phonon densities of states in K0.8Fe1.6Se2 using inelastic neutron scattering technique. While cooling down to 150 K, a phonon peak splitting around 25 meV is observed and a new peak appears at 31 meV. The measurements support the recent Raman and infra-red measurements indicating a lowering of symmetry of K0.8Fe1.6Se2 upon cooling below 250 K. Ab-initio phonon calculations have been carried out for K0.8Fe1.6Se2 and KFe2Se2. The comparison of the phonon spectra as obtained from the magnetic as well as non magnetic calculations show pronounced differences. We show that in the two calculations the energy range of the vibrational contribution from both Fe and Se are quite different. We conclude that Fe magnetism is correlated to the phonon dynamics and it plays an important role in stabilizing the structure of K0.8Fe1.6Se2 as well as that of KFe2Se2. The calculations highlight the presence of low energy librational modes in K0.8Fe1.6Se2 as compared to KFe2Se2.Comment: 22 pages, 3 Tables, 7 Figure

    Ultrafast Molecular Transport on Carbon Surfaces: The Diffusion of Ammonia on Graphite

    Get PDF
    We present a combined experimental and theoretical study of the self-diffusion of ammonia on exfoliated graphite. Using neutron time-of-flight spectroscopy we are able to resolve the ultrafast diffusion process of adsorbed ammonia, NH3_3, on graphite. Together with van der Waals corrected density functional theory calculations we show that the diffusion of NH3_3 follows a hopping motion on a weakly corrugated potential energy surface with an activation energy of about 4 meV which is particularly low for this type of diffusive motion. The hopping motion includes further a significant number of long jumps and the diffusion constant of ammonia adsorbed on graphite is determined with D=3.9 \cdot 10^{-8}~\mbox{m}^2 /\mbox{s} at 94 K

    Striped Magnetic Ground State of the Kagome Lattice in Fe4Si2Sn7O16

    Get PDF
    We have experimentally identified a new magnetic ground state for the kagome lattice, in the perfectly hexagonal Fe2+ (3d6, S = 2) compound Fe4Si2Sn7O16. Representational symmetry analysis of neutron diffraction data shows that below T_N = 3.5 K, the spins on 2/3 of the magnetic ions order into canted antiferromagnetic chains, separated by the remaining 1/3 which are geometrically frustrated and show no long-range order down to at least T = 0.1 K. Moessbauer spectroscopy confirms that there is no static order on the latter 1/3 of the magnetic ions - i.e., they are in a liquid-like rather than a frozen state - down to at least 1.65 K. A heavily Mn-doped sample Fe1.45Mn2.55Si2Sn7O16 has the same magnetic structure. Although the propagation vector q = (0, 1/2 , 1/2 ) breaks hexagonal symmetry, we see no evidence for magnetostriction in the form of a lattice distortion within the resolution of our data. We discuss the relationship to partially frustrated magnetic order on the pyrochlore lattice of Gd2Ti2O7, and to theoretical models that predict symmetry breaking ground states for perfect kagome lattices.Comment: 5 pages, 5 figure

    Anomalous thermal expansion in 1D transition-metal cyanides: what makes the novel trimetallic cyanide Cu1/3Ag1/3Au1/3CN behave differently?

    Get PDF
    The structural dynamics of a quasi-one-dimensional (1D) mixed-metal cyanide, Cu1/3Ag1/3Au1/3CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as group 11 cyanides CuCN, AgCN, AuCN and bimetallic cyanides MxM’1-xCN (M, M’ = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu1/3Ag1/3Au1/3CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by lattice-dynamical density-functional-theory (DFT) calculations. Synchrotron-based pair-distribution-function (PDF) analysis and 13C solid-state nuclear-magnetic-resonance (SSNMR) measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. As there are different metal-to-cyanide bond lengths in Cu1/3Ag1/3Au1/3CN, the metals in neighboring chains cannot all be truly co-planar in a straight-chain model. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature
    • …
    corecore