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Striped magnetic ground state of the kagome lattice in Fe4Si2Sn7O16
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We have experimentally identified a different magnetic ground state for the kagome lattice, in the perfectly
hexagonal Fe2+ (3d6, S = 2) compound Fe4Si2Sn7O16. A representational symmetry analysis of neutron
diffraction data shows that below TN = 3.5 K, the spins on 2

3 of the magnetic ions order into canted
antiferromagnetic chains, separated by the remaining 1

3 which are geometrically frustrated and show no long-range
order down to at least T = 0.1 K. Mössbauer spectroscopy confirms that there is no static order on the latter
1
3 of the magnetic ions—i.e., they are in a liquidlike rather than a frozen state—down to at least 1.65 K. A
heavily Mn-doped sample Fe1.45Mn2.55Si2Sn7O16 has the same magnetic structure. Although the propagation
vector q = (0, 1

2 , 1
2 ) breaks hexagonal symmetry, we see no evidence for magnetostriction in the form of a lattice

distortion within the resolution of our data. We discuss the relationship to partially frustrated magnetic order on
the pyrochlore lattice of Gd2Ti2O7, and to theoretical models that predict symmetry breaking ground states for
perfect kagome lattices.
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Ever since the first published consideration of the ground
state of a triangular lattice of Ising spins [1], the pursuit of
materials with geometrically frustrated magnetic (GFM) lat-
tices has been an important driver in experimental condensed
matter physics [2]. Perfect GFM lattices are proving grounds
for a number of predicted exotic states of matter. The most
famous of these is the quantum spin liquid (QSL), in which
there is effectively no energy barrier between macroscopically
degenerate ground states for S = 1

2 spins, which can therefore
continue to fluctuate down to T = 0 K [3].

The simplest GFM case is a triangular lattice, followed
by the expanded triangular network known as the kagome
lattice. Undistorted (perfectly hexagonal) magnetic kagome
lattices are rare—the most studied examples are naturally
occurring minerals or synthetic versions thereof, notably the
jarosites AB3(SO4)2(OH)6 where B3+ can be Fe3+ (S = 5

2 )
[4], Cr3+ (S = 3

2 ) [5], or V3+ (S = 1) [6], which generally
still undergo Néel ordering due to Dzyaloshinkii-Moriya
anisotropy. A series of quinternary oxalates studies by Lhotel
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et al. [7,8], which contain Fe2+ (S = 2) lattices equivalent
to kagomes (for first neighbor interactions only), all freeze
into a q = 0 Néel state below ∼3.2 K. More recently, the
Cu2+ (S = 1

2 ) undistorted kagome compound herbertsmithite
ZnCu3(OH)6Cl2 [9] has attracted a great deal of attention as
arguably the most promising QSL candidate so far discovered
(for a recent review, see Ref. [10]).

Fe4Si2Sn7O16 [11] is a synthetic compound that incorpo-
rates an undistorted kagome lattice of high-spin (HS) Fe2+

(3d6, S = 2) magnetic ions on the 3f Wyckoff sites of its
hexagonal (trigonal space group P 3̄m1, No. 164) structure.
The kagome lattice is located in layers of edge-sharing FeO6

and SnO6 octahedra (hereafter called the oxide layer), which
alternate with layers of oxygen-linked FeSn6 octahedra (the
stannide layer). The layers are separated by SiO4 tetrahedra
(see Fig. 1). A triangular lattice of low-spin (LS) Fe2+ (3d6,
S = 0) on the 1a Wyckoff site in the stannide layer is
magnetically inactive.

We recently reported a long-range antiferromagnetic
(AFM) Néel ordering transition in Fe4Si2Sn7O16 at TN =
3.0 K and its Mn-doped (in the oxide layer) analog
Fe1.45Mn2.55Si2Sn7O16 at TN = 2.5 K [12]. There was no
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FIG. 1. P 3̄m1 structure of Fe4Si2Sn7O16, showing edge-sharing
FeO6 (gold) and SnO6 (silver) octahedra in the oxide layer; Fe
(gold), Sn (silver), and O (red) atoms in the stannide layer; and SiO4

tetrahedra (blue) in between.

evidence of spin-glass behavior or a ferromagnetic (FM)
component to the ground state. Given their perfectly hexagonal
lattices above TN , the ordered magnetic ground state was
expected to be either the conventional q = 0 or (

√
3 × √

3)
solution, which preserve hexagonal symmetry [13]. In the
work reported in this Rapid Communication, we set out to test
this by collecting low-temperature neutron powder diffraction
(NPD) and Mössbauer spectroscopy data above and below
TN . Contrary to expectation, we found that the ground state
is a striped AFM structure in which 2

3 of the magnetic sites
are completely ordered, while the other 1

3 are frustrated and
remain completely disordered down to at least 0.1 K.

The magnetometry data collected for the present study
were identical to those in Ref. [12] apart from slightly revised
values for Fe4Si2Sn7O16 of TN = 3.5 K, μeff = 5.45μB per
HS Fe2+, and θ = −12.7 K, which corresponds to a modest
frustration index [14], f = |θ/TN | = 3.6 (see Figs. 1–3 in
the Supplemental Material [15]). Note that the orbital angular
momentum L is not completely quenched (μeff spin-only =
4.90μB ), as is commonly observed in Fe2+ oxides.

High-resolution NPD data were collected on the instru-
ment Echidna [16] at the OPAL reactor, Lucas Heights,
Australia. Samples were placed in 6-mm-diam vanadium cans
using neutrons of wavelength λ = 2.4395 Å, over the range
2.75–162◦2θ with a step size of 0.125◦2θ . Low-temperature
data were collected to 1.6 K in a cryostat and 0.1 K
in a dilution fridge for Fe4Si2Sn7O16, and to 1.8 K for
Fe1.45Mn2.55Si2Sn7O16. Rietveld refinements of the nuclear
structure above TN were consistent with our previous work
using single-crystal x-ray diffraction [11] and a combination
of synchrotron x-ray and neutron powder diffraction [12].

Different low-angle Bragg peaks emerge for Fe4Si2Sn7O16

at 1.6 K, below TN , indicative of three-dimensional (3D)
long-range ordered magnetism (Fig. 2). The same peaks are
observed at 0.1 K, i.e., the magnetic structure shows no
further change down to at least this temperature; and at 1.8 K
for Fe1.45Mn2.55Si2Sn7O16, i.e., the magnetic structure is not

20 40 60 80 100 120 140
2θ (°)

In
te

ns
ity

 (×
10

4  c
ou

nt
s)

0

2

4

6

10 20 30 40 50 60 70 80
2θ (°)

FIG. 2. Final Rietveld fit (black) to 1.6 K NPD data (red) from
Fe4Si2Sn7O16, using the �1 irreducible representation (Rp = 0.121,
Rwp = 0.128). Peak markers from top to bottom correspond to the
nuclear and magnetic components of Fe4Si2Sn7O16, and a <1 wt%
SnO2 impurity. The inset shows the fit to magnetic peaks only (10 K
data subtracted from 1.6 K data) at low angles.

fundamentally changed by almost complete substitution of
Mn2+ for Fe2+ (see Fig. 2 of the Supplemental Material [15]).
All peaks could be indexed to a propagation vector q =
(0, 1

2 , 1
2 ), which breaks hexagonal symmetry. However, we

do not observe any peak splitting or broadening within the
resolution of our NPD data, indicating that magnetostriction
is very small.

We solved the magnetic structure by representational
symmetry analysis using the BasIreps routine in the program
FULLPROF [17]. The propagation vector q = (0, 1

2 , 1
2 ) acting on

the space group P 3̄m1 splits the magnetic HS Fe2+ on the 3f

site in the oxide layer into two orbits, Fe-3f (1) and Fe-3f (2),
in a 1:2 ratio. The irreducible representations (irreps) for each
orbit decompose in terms of two one-dimensional (1D) irreps
for Fe-3f (1), �mag = 2�2 + �4, and another two for Fe-3f (2),
�mag = 3�1 + 3�3. The basis vectors are given in Table I of
the Supplemental Material [15].

We first tested these four possible representations inde-
pendently [i.e., with only the Fe-3f (1) or Fe-3f (2) site
magnetically active] by Rietveld refinement against 1.6 K
data using FULLPROF. We found that the �1 representation
for Fe-3f (2) gave by far the best fit. We tried adding the �2

and �4 representations for Fe-3f (1) to the refinement, but
in neither case was the fit improved, and the moments on
Fe-3f (1) refined to zero within error. The component of the
moment on Fe-3f (2) along the z axis also refined to zero
within error. The final refinement, for which the fit is shown
in Fig. 2, was therefore carried out using only the x and y

axis components of the �1 representation for Fe-3f (2). This
structure is equivalent to the Shubnikov magnetic space group
(Opechowski-Guccione setting, C2c2/m, No. 12.6.71).

Figure 3 shows the final refined magnetic structure at 1.6 K,
with an ordered moment of 2.52(6)μB [μx = 0.44(6), μy =
2.71(5)μB ]. The refinement at 0.1 K yielded an increased
moment of 3.2(2)μB [μx = 0.3(2), μy = 3.3(2)μB ]. The
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FIG. 3. Final refined magnetic structure of Fe4Si2Sn7O16, show-
ing the Fe atoms in a single kagome layer at z = 1

2 . The nuclear unit
cell is shown as dotted black lines. The z-axis component refined
to zero, and moments on the sites with no vector drawn refined to
zero. The moments in the surrounding layers at z = ±1c are AFM
with respect to those shown. Dotted lines show nearest-neighbor (J1,
black) second-nearest-neighbor (J2, green), and diagonal (Jd , blue)
magnetic exchange pathways (see text for details).

slight reduction compared to the total spin-only moment of
4μB for HS Fe2+ may be an effect of crystal field and
spin-orbit coupling. The most striking feature is the absence
of long-range magnetic order on the Fe-3f (1) sites, which
sit on the kagome legs between magnetically ordered rows
of Fe-3f (2) sites along the x direction, despite all Fe-3f

sites being HS Fe2+ (d6, S = 2) at all temperatures. Note
that although the spin orientation in the x-y plane refined
robustly, NPD cannot distinguish between the model shown in
Fig. 3 and an alternative version in which the ordered rows of
spins are shifted by 1

2a, to point approximately towards/away
from the nonmagnetically ordered Fe-3f (1) site rather than
towards/away from the center of the hexagon.

It is clear from Fig. 3 that the Fe-3f (1) site is geometri-
cally frustrated by its four nearest-neighbor Fe-3f (2) sites,
regardless of the sign of magnetic exchange with those sites.
This is consistent with the zero refined moment for Fe-3f (1),
and the fact that because the propagation vector splits the Fe
sites into two independent orbits, the molecular field created
by one sublattice on the other one is zero, i.e., the 3f (1)
magnetic moments can only couple to each other through
Jd interactions. However, NPD cannot determine whether
Fe-3f (1) is locally ordered but long-range disordered, or
completely locally disordered. More importantly, it cannot
distinguish between the model shown in Fig. 3 and a multi-q
structure with three arms of the propagation vector star q1 =
(0, 1

2 , 1
2 ), q2 = ( 1

2 ,0, 1
2 ), q3 = ( 1

2 , 1
2 , 1

2 ). Such multi-q structures
could preserve trigonal symmetry without requiring stripes
of disordered Fe2+ ions. The anisotropy of Fe2+ could be an
important parameter in the Hamiltonian to stabilize such a
structure. We therefore tested all 1-, 2-, and 3-q symmetry
allowed models, with two of the 3-q models (Shubnikov

FIG. 4. Mössbauer spectra above (5 K) and below (1.8 K) TN .
For the 5 K pattern, the total fit is shown by the magenta line, as
well as the two subspectra from Fe in the 1a (red) and 3f (green)
sites. For the 1.8 K pattern, the same colors are used, except that the
contribution from iron in the 3f site is now split into nonmagnetic
(green) and magnetic (teal).

groups PC2/m, No. 10.8.56 and P2c3̄m1, No. 164.6.1320 in
Opechowski-Guccione settings) giving comparable fits to the
striped 1-q model discussed above. To resolve the single-q ver-
sus multi-q question, we conducted a Mössbauer spectroscopy
experiment.

The Mössbauer spectra above and below TN were obtained
on a conventional spectrometer operated in sine mode with
both the sample and 57CoRh source cooled by flowing He
gas. The system was calibrated using α-Fe metal at room
temperature and the spectra were fitted to a sum of Lorentzians
with positions and intensities derived from a full solution
to the nuclear Hamiltonian [18]. The spectrum above TN

at 5 K shown in Fig. 4, which is effectively identical to
the data published in Ref. [11], shows that the subspectra
from the Fe in the 1a and 3f sites are clearly resolved,
being distinct in both spectral area (1:3 as expected from
site multiplicities) and hyperfine parameters (as expected from
the different spin configurations). The LS Fe2+ on the 1a site
gives an isomer shift δ = 0.33(1) mm/s with a quadrupole
splitting � = 0.48(1) mm/s, while the HS Fe2+ on the 3f

site gives δ = 1.19(1) mm/s and � = 2.41(1) mm/s. Cooling
through TN to 1.8 K leads to remarkably limited changes. The
subspectrum from the Fe-1a site is completely unchanged.
There is no evidence for magnetic splitting at this site and
therefore no magnetic order, consistent with its LS d6 (S = 0)
configuration. The well-split doublet from the Fe-3f site also
persists unchanged, but its intensity is greatly reduced to equal
that of the 1a subspectrum. This nonmagnetically ordered
subspectrum therefore now reflects only 1

3 of HS Fe2+ on the
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3f site, consistent with the Fe-3f (1) site in our single-q striped
model. The remaining contribution to the 1.8 K spectrum in
Fig. 4 comes from the 2

3 of HS Fe2+ 3f sites that do order,
consistent with Fe-3f(2) in our striped model. The Fe-3f(2)
subspectrum can be fitted assuming the same values for δ

and � as for Fe-3f (1), but with a small additional hyperfine
magnetic field (Bhf). The magnetic component could not be
fitted as a single subspectrum, and required further splitting
into two equal (within error) area subcomponents. This is a
very weak effect (the fields are only 7.5 and 4.3 T) that does
not change the main result. It may indicate that the moments
on the two Fe-3f subsites do not make exactly the same angle
with the electric field gradient axes in the kagome plane, as a
result of which they are not truly equivalent, producing some
small difference in orbital contribution.

Crucially, the splitting of the Mössbauer spectra is not
consistent with any of the multi-q models, including the
two mentioned above that fit our NPD fits as well as the
striped model does. Finally, the observed hyperfine fields are
remarkably small [7.5(3) and 4.3(3) T], and further cooling
to 1.65 K did not lead to a significant increase and so
these values appear to be close to their T = 0 limits. The
simplest explanation for such small fields is highly dynamic
spins, but the dynamic component would have to be very fast
(>100 MHz) because we not see any line broadening due to
slower dynamics.

We note here that while the Mössbauer analysis fully
and independently confirms the striped model from NPD in
which the Fe-1a site does not order and only 2

3 of the Fe-3f

site orders, it allows us to go further. For moments on a
crystallographic site to contribute to a (Bragg) diffraction
peak they must be long-range ordered. However, for a nonzero
hyperfine field to be observed in a Mössbauer spectrum, the
moments need only be static on a time scale of ∼0.1 μs—they
just need to have a nonzero time average over a relatively
short time. Thus, our observation that Bhf is zero for 1

3 of the
Fe-3f sites means that we can rule out any “frozen” random
spin configuration that does not give magnetic Bragg peaks in
NPD, as well as the multi-q state. There is no static order at
1
3 of these Fe-3f sites, at least down to 1.65 K. Furthermore,
since there are no significant changes in either δ or �, we can
also rule out changes in the electronic configuration of some
or all of the Fe ions (e.g., a HS → LS transition making them
nonmagnetic).

A further striking aspect of the striped state of Fe4Si2Sn7O16

is that it breaks hexagonal symmetry. Zorko et al. [19] recently
presented experimental evidence for symmetry breaking in
herbertsmithite, but this appears to be related to the presence
of significant (5%–8%) disorder on its otherwise “perfect”
kagome lattice, which our diffraction data rule out in the
present case. A number of theoretical models predict symmetry
breaking on S = 1

2 kagome lattices, notably the valence bond
crystal (VBC) state [20] (with the help of magnetoelastic cou-
pling) and the striped spin-liquid crystal state [21]. However,
these models are based on the resonance valence bond (RVB)
picture of paired-up S = 1

2 spins, so their relevance to the
present S = 2 case is unclear. Similarly, a type of striped order
was predicted by Ballou [22] in itinerant electron kagome
systems (the disordered sites being really nonmagnetic in this
case), but the mechanism should be different to the present

insulating case. The magnetic structure of Fe4Si2Sn7O16—and
the fact that it is not altered by substituting Mn2+ (HS d5,
S = 5

2 ) for Fe2+ (HS d6, S = 2)—are important experimental
observations against which to test theoretical models of the
large-S kagome lattice. In the present case, the fact that
the angle between ordered spins along the x axis is very
close to 120◦ (the value at 0.1 K is 129◦) is consistent with
the magnetic moments being confined along the twofold axis,
which suggests that magnetocrystalline anisotropy may play
an important role.

Preliminary Hubbard-corrected density functional theory
(DFT+U ) calculations [23] for the noncollinear striped ground
state of Fe4Si2Sn7O16 reproduced the zero net moment on
the Fe-3f (1) sites. However, the q = 0 state in the same
1×2×2 supercell was still found to be energetically lower.
Noting that even the definition of a ground state in this system
is problematic, dedicated detailed theoretical treatments are
clearly required. In this context, we note that Iqbal et al.
[24] and Gong et al. [25] recently treated the S = 1

2 kagome
lattice using high-level renormalization group theory. They
identified the dominant magnetic interaction as AFM exchange
through the long diagonals of the hexagons, labeled Jd

in Fig. 3; the ground state then depends on the balance
between nearest-neighbor (J1) and second-nearest-neighbor
(J2) exchange. For |J1| < |J2|, they obtain the “cuboc1”
phase, which is consistent with the vertical components of
the spin vectors as shown in Fig. 3, while for |J1| > |J2|,
they obtain the “cuboc2” phase, which is consistent with the
horizontal components. The experimental magnetic structure
of Fe4Si2Sn7O16 can thus be described as a linear combination
of cuboc1 and cuboc2. Although this solution was not
explicitly predicted for |J1| ≈ |J2|, our experimental case has
additional features, notably much bigger spins which make a
VBC state highly unlikely, and the presence of ∼90◦ Fe-O-Fe
superexchange pathways in addition to Fe-Fe direct exchange.
A comparably detailed theoretical study is beyond the scope
of the present work, but may represent a productive way
forward.

Finally, we note an intriguing experimental comparison to
Gd2Ti2O7. The topology of the magnetic Gd3+ lattice in this
pyrochlore-type compound can be described as four sets of
interpenetrating kagome planes, the triangles of which meet
to form tetrahedra. Below TN = 1.1 K, it adopts the partially
ordered “1-k” structure, in which one of those four sets of
kagome planes (involving 3

4 of the spins) is q = 0 long-range
AFM ordered, while the remaining 1

4 of the spins between
those planes remain frustrated [26]. If the spins in Fig. 3 are
collectively rotated about the x axis, the magnetic structure
of Fe4Si2Sn7O16 becomes equivalent to one of the three other
kagome planes in Gd2Ti2O7, which cut through the frustrated
spin. Below T ′ = 0.7 K, the frustrated spin in Gd2Ti2O7 may
order weakly into the “4-k” structure [27], although this has
been disputed [28] and muon-spin relaxation (μSR) data show
that fluctuations continue down to at least 20 mK [29]. Future
neutron diffuse scattering and/or μSR experiments at dilution
temperatures might therefore provide similar insights into
Fe4Si2Sn7O16, and the reasons for which it adopts the partially
ordered striped state in preference to the fully ordered q = 0
one.
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