55 research outputs found

    Ankle proprioception is not targeted by exercises on an unstable surface

    Get PDF
    Item does not contain fulltextLaboratory study using a repeated measures design. The aim of this study was to determine if ankle proprioception is targeted in exercises on unstable surfaces. Lateral ankle sprain (LAS) has recurrence rates over 70%, which are believed to be due to a reduced accuracy of proprioceptive signals from the ankle. Proprioceptive exercises in rehabilitation of LAS mostly consist of balancing activities on an unstable surface. The methods include 100 healthy adults stood barefoot on a solid surface and a foam pad over a force plate, with occluded vision. Mechanical vibration was used to stimulate proprioceptive output of muscle spindles of triceps surae and lumbar paraspinal musculature. Each trial lasted for 60 s; vibration was applied from the 15th till the 30th second. Changes in mean velocity and mean position of the center of pressure (CoP) as a result of muscle vibration were calculated. Results show that on foam, the effect of triceps surae vibration on mean CoP velocity was significantly smaller than on a solid surface, while for paraspinal musculature vibration the effect was bigger on foam than on solid surface. Similar effects were seen for mean CoP displacement as outcome. Exercises on unstable surfaces appear not to target peripheral ankle proprioception. Exercises on an unstable surface may challenge the capacity of the central nervous system to shift the weighting of sources of proprioceptive signals on balance

    Hip abduction weakness in elite junior footballers is common but easy to correct quickly: a prospective sports team cohort based study

    Get PDF
    Background: Hip abduction weakness has never been documented on a population basis as a common finding in a healthy group of athletes and would not normally be found in an elite adolescent athlete. This study aimed to show that hip abduction weakness not only occurs in this group but also is common and easy to correct with an unsupervised home based program. Methods: A prospective sports team cohort based study was performed with thirty elite adolescent under-17 Australian Rules Footballers in the Australian Institute of Sport/Australian Football League Under-17 training academy. The players had their hip abduction performance assessed and were then instructed in a hip abduction muscle training exercise. This was performed on a daily basis for two months and then they were reassessed.Results: The results showed 14 of 28 athletes who completed the protocol had marked weakness or a side-to-side difference of more than 25% at baseline. Two months later ten players recorded an improvement of ≥ 80% in their recorded scores. The mean muscle performance on the right side improved from 151 Newton (N) to 202 N (p<0.001) while on the left, the recorded results improved from 158 N to 223 N (p<0.001). Conclusions: The baseline values show widespread profound deficiencies in hip abduction performance not previously reported. Very large performance increases can be achieved, unsupervised, in a short period of time to potentially allow large clinically significant gains. This assessment should be an integral part of preparticipation screening and assessed in those with lower limb injuries. This particular exercise should be used clinically and more research is needed to determine its injury prevention and performance enhancement implications

    Can a standard dose of eicosapentaenoic acid (EPA) supplementation reduce the symptoms of delayed onset of muscle soreness?

    Get PDF
    Unaccustomed exercise can result in delayed onset of muscle soreness (DOMS) which can affect athletic performance. Although DOMS is a useful tool to identify muscle damage and remodelling, prolonged symptoms of DOMS may be associated with the over-training syndrome. In order to reduce the symptoms of DOMS numerous management strategies have been attempted with no significant effect on DOMS-associated cytokines surge. The present study aimed to investigate the acute and chronic effects of a 2x180 mg per day dose of eicosapentaenoic acid (EPA) on interleukin-6 (IL-6) mediated inflammatory response and symptoms associated with DOMS. Methods: Seventeen healthy non-smoking females (age 20.4 +/- 2.1 years, height 161.2 +/- 8.3cm and mass 61.48 +/- 7.4kg) were randomly assigned to either placebo (N = 10) or EPA (N = 7). Serum IL-6, isometric and isokinetic (concentric and eccentric) strength, and rating of perceived exertion (RPE) were recorded on four occasions: i-prior to supplementation, ii-immediately after three weeks of supplementation (basal effects), iii-48 hours following a single bout of resistance exercise (acute training response effects), and iv-48 hours following the last of a series of three bouts of resistance exercise (chronic training response effects). Results: There was only a group difference in the degree of change in circulating IL-6 levels. In fact, relative to the first baseline, by the third bout of eccentric workout, the EPA group had 103 +/- 60% increment in IL-6 levels whereas the placebo group only had 80 +/- 26% incremented IL-6 levels (P = 0.020). We also describe a stable multiple linear regression model which included measures of strength and not IL-6 as predictors of RPE scale. Conclusion: The present study suggests that in doubling the standard recommended dose of EPA, whilst this may still not be beneficial at ameliorating the symptoms of DOMS, it counter intuitively appears to enhance the cytokine response to exercise. In a context where previous in vitro work has shown EPA to decrease the effects of inflammatory cytokines, it may in fact be that the doses required in vivo is much larger than current recommended amounts. An attempt to dampen the exercise-induced cytokine flux in fact results in an over-compensatory response of this system

    Effects of fatigue on trunk stability in elite gymnasts

    Get PDF
    The aim of the present study was to test the hypothesis that fatigue due to exercises performed in training leads to a decrement of trunk stability in elite, female gymnasts. Nine female gymnasts participated in the study. To fatigue trunk muscles, four series of five dump handstands on the uneven bar were performed. Before and after the fatigue protocol, participants performed three trials of a balancing task while sitting on a seat fixed over a hemisphere to create an unstable surface. A force plate tracked the location of the center of pressure (CoP). In addition, nine trials were performed in which the seat was backward inclined over a set angle and suddenly released after which the subject had to regain balance. Sway amplitude and frequency in unperturbed sitting were determined from the CoP time series and averaged over trials. The maximum displacement and rate of recovery of the CoP location after the sudden release were determined and averaged over trials. After the fatigue protocol, sway amplitude in the fore-aft direction was significantly increased (p = 0.03), while sway frequency was decreased (p = 0.005). In addition, the maximum displacement after the sudden release was increased (p = 0.009), while the rate of recovery after the perturbation was decreased (p = 0.05). Fatigue induced by series of exercises representing a realistic training load caused a measurable decrement in dynamic stability of the trunk in elite gymnasts

    Proprioceptive performance of bilateral upper and lower limb joints: side-general and site-specific effects

    Get PDF
    Superiority of the left upper limb in proprioception tasks performed by right-handed individuals has been attributed to better utilization of proprioceptive information by a non-preferred arm/hemisphere system. However, it is undetermined whether this holds for multiple upper and lower limb joints. Accordingly, the present study tested active movement proprioception at four pairs of upper and lower limb joints, after selecting twelve participants with both strong right arm and right leg preference. A battery of versions of the active movement extent discrimination apparatus were employed to generate the stimuli for movements of different extents at the ankle, knee, shoulder and fingers on the right and left sides of the body, and discrimination scores were derived from participants’ responses. Proprioceptive performance on the non-preferred left side was significantly better than the preferred right side at all four joints tested (overall F(1, 11) = 36.36, p < 0.001, partial η(2) = 0.77). In the 8 × 8 matrix formed by all joints, only correlations between the proprioceptive accuracy scores for the right and left sides at the same joint were significant (ankles 0.93, knees 0.89, shoulders 0.87, fingers 0.91, p ≤ 0.001; all others r ≤ 0.40, p ≥ 0.20). The results point to both a side-general effect and a site-specific effect in the integration of proprioceptive information during active movement tasks, whereby the non-preferred limb/hemisphere system is specialized in the utilization of the best proprioceptive sources available at each specific joint, but the combination of sources employed differs between body sites
    corecore