11 research outputs found

    Reactions of shorebirds and passerines to human development in the Russian Arctic under the influence of strict conservation measures

    Get PDF
    Anthropogenic impact on nesting waders and passerine birds in the Arctic in surroundings of the industrial complex Sabetta, Yamal Peninsula, Russia was studied. A lot of factors associated with human development may affect nesting birds. The human-subsidized predation is considered to be the most significant. Anthropogenic food sources are usually present in human-transformed habitats, as well as additional dens and perch sites. This leads to a higher press of predation. In Sabetta, there are specific conditions causing artificially-limited predation and human-induced disturbance. Finding a large number of nests in close proximity to industrial infrastructure we have suggested that waders (order Charadriiformes) and passerine (order Passeriformes) birds may be tolerant to an urbanized landscape. In the studied industrial habitat, they probably do not reduce the nesting density, thanks to particular advantages of such habitats (drainability and variety of shelters). To test this hypothesis, we performed an analysis of the relationship between the nesting density of the 8 most abundant species of waders and passerines in relation to the degree of habitat transformation. Statistical analysis was carried out using the GLM module of Statsoft Statistica 10. We found a positive relation between nesting density of the Ringed Plover (Charadrius hiaticula) and Snow bunting (Plectrophenax nivalis) and the degree of transformation. Habitat transformation did not significantly affect the White wagtail (Motacilla alba) and Red-throated pipit (Anthus cervinus). The Lapland longspur (Calcarius lapponicus) showed a clear decrease of the nest density in transformed habitats. Last but not least, the Little stint (Calidris minuta), Temminck’s stint (C. temminckii) and Red-necked phalarope (Phalaropus lobatus) completely ignored only artificial habitats, whereas in partially transformed habitats, their mean nesting density was similar to undisturbed natural areas

    Nesting of Barnacle Goose (Branta leucopsis) in the Russian Part of the Gulf of Finland

    Get PDF
    Until the end of the 1980s, the Barnacle Goose (Branta leucopsis) was an extremely rare migrating species in the Russian part of the Gulf of Finland, but in recent years it has become one of the mass migrants there. The first nest of a Barnacle Goose in the region was found on Dolgy Reef Island close to the Russian-Finnish border in 1995. Barnacle Geese then started expanding onto the islands in the eastern part of the Gulf of Finland. They occupied islands mostly in the northern part of the gulf, but nests were found in its central parts and close to the southwest coast as well. Barnacle Geese nested mostly on small, rocky, forest-free islands. By 2006, the size of the breeding population of this species had increased to 31 pairs. Forty nests were found in 2014, and an explosive population growth to 76 nests was observed in 2015. In 2010, Barnacle Geese started to breed on Ladoga Lake, and in 2015 the first nest was found on Onega Lake. Until 2010 Barnacle Geese had nested in the eastern part of the Gulf of Finland almost exclusively on the islands lying at a distance of 2.4 – 10.1 km from the coast. The population growth that occurred in subsequent years was due primarily to the birds’ breeding on islands closest to the coast, no farther than 2 km away from the shore. After hatching, broods from inshore islets moved to feed on coastal meadows, but nonbreeding birds and failed breeders generally remained on offshore islands for the molting period. Further expansion of the Barnacle Goose in the eastern part of the Gulf of Finland is expected. However, expansion could ultimately be restricted by the limited food resources for broods and molting birds.Jusqu’à la fin des années 1980, la bernache nonnette (Branta leucopsis) était une espèce migratrice extrêmement rare dans la partie russe du golfe de Finlande, mais ces dernières années, elle est devenue l’une des espèces migratrices importantes de l’endroit. Le premier nid de bernache nonnette dans la région a été trouvé sur l’île Dolgy Reef près de la frontière finno-russe en 1995. Ensuite, la bernache nonnette a commencé à s’étendre sur les îles de la partie est du golfe de Finlande. Elle occupait principalement des îles de la partie nord du golfe, bien que des nids aient été trouvés dans les parties centrales et à proximité de la côte sud-ouest. La bernache nonnette faisait surtout son nid sur les petites îles rocheuses dépourvues d’arbres. Vers 2006, la taille de la population reproductrice de cette espèce avait augmenté pour s’établir à 31 paires. Quarante nids ont été repérés en 2014, puis en 2015, on a assisté à une croissance explosive de la population, qui s’est établie à 76 nids en 2015. En 2010, la bernache nonnette a commencé à se reproduire au lac Ladoga, puis en 2015, un premier nid a été trouvé au lac Onega. Jusqu’en 2010, la bernache nonnette avait fait son nid dans la partie est du golfe de Finlande, presque exclusivement sur les îles se trouvant à une distance allant de 2,4 à 10,1 km de la côte. La croissance de population à laquelle on a assisté au cours des années qui ont suivi était principalement attribuable à la reproduction des oiseaux sur les îles se situant plus près de la côte, pas plus loin qu’à deux kilomètres de la rive. Après l’éclosion, les nichées des îlots côtiers se sont déplacées pour se nourrir dans les prés côtiers, mais les oiseaux n’étant pas en reproduction et les reproducteurs en échec sont restés généralement sur les îles au large pendant la période de mue. On s’attend à ce que la bernache nonnette s’étende davantage dans la partie est du golfe de Finlande. Cependant, sa croissance pourrait finir par être restreinte par les ressources alimentaires limitées convenant aux oiseaux de nichées et aux oiseaux en période de mue.Белощекая казарка, бывшая до конца 1980-х гг. исключительно редким мигрирующим видом в российской части Финского залива, стала одним из массовых мигрантов в настоящее время. Первое гнездо белощекой казарки в регионе было найдено на острове Долгий Риф недалеко от границы с Финляндией в 1995 г. Затем казарки начали расселяться по островам восточной части Финского залива. Они занимали острова в основном в северной части залива, однако гнезда также были найдены на островах в центральной части залива, а также у юго-западного побережья. Белощекие казарки гнездились исключительно на небольших безлесных островах. К 2006 г. количество гнездящихся в регионе птиц достигло 31 пары. В 2014 г. было найдено 40 гнезд. Взрывной рост численности до 76 гнездящихся пар наблюдался в 2015 г. В 2010 г. казарки начали гнездиться на Ладожском озере, а в 2015 г. первое гнездо вида было найдено на Онежском озере. До 2010 г. белощекие казарки на востоке Финского залива гнездились на островах, удаленных от берега более, чем на 2.4 км. В последующие годы рост гнездовой популяции происходил за счет пар, гнездящихся на островах, удаленных от побережья не более, чем на два км. Выводки с прибрежных островов перемещались на приморские луга на побережье, в то время как неразмножающиеся особи на период линьки оставались на островах в открытой части залива. В дальнейшем ожидается продолжение расселения белощеких казарок в восточной части Финского залива, однако оно может быть ограничено лимитированными пищевыми ресурсами для выводков и линных птиц

    Raw data

    No full text
    Using GPS-GSM trackers, we monitored individual geese in flight throughout the year.</p

    The Long-Term Monitoring of Bird Populations on Kolguev Island in the Barents Sea

    Get PDF
    Kolguev Island (69˚05′ N 49˚15′ E) is located in the Pechora Sea, the southeastern part of the Barents Sea. The island’s ecosystem is unusual due to the total absence of rodents and specialized predators such as weasels, while non-specialized predators such as Arctic (Vulpes lagopus) and red (V. vulpes) foxes and Rough-legged Hawk (Buteo lagopus) are common. Currently, 111 bird species have been registered here, of which 58 are nesting. The absence of rodents and the relatively stable predation pressure have resulted in the high abundance of many bird species: Willow Ptarmigan (Lagopus lagopus), several goose species, some waders, and passerines. Over the 125-year history of ornithological studies on Kolguev, the island avifauna has changed significantly. The trend of an increase in the proportion of widespread and Siberian species together with a decrease in the proportion of Arctic species was observed. Since 2006, a thorough monitoring of Kolguev avifauna has been carried out, during which the dynamics of the bird population densities have been traced. The abundance of Black-bellied Plover (Pluvialis squatarola) and Dunlin (Calidris alpina) decreased, while the numbers of Barnacle Goose (Branta leucopsis) have increased sharply since the 1980s. The breeding density of Rough-legged Hawk has also increased in recent years. The long-term monitoring of Kolguev ecosystems has indicated the high international conservation value of the island due to the high breeding density of many bird species. Our study, covering more than a century of avifaunal studies with almost annual monitoring over the past three decades, provides an unusually long and detailed time-series for an Arctic island.L’île de Kolgouev (69˚05ʹ N 49˚15ʹ E) se situe dans la mer de Pechora, dans la partie sud-est de la mer de Barents. L’écosystème de l’île est inhabituel en raison de l’absence totale de rongeurs et de prédateurs spécialisés comme la belette, tandis que les prédateurs non spécialisés comme le renard arctique (Vulpes lagopus), le renard roux (V. vulpes) et la buse pattue (Buteo lagopus) sont communs. À présent, 111 espèces d’oiseaux ont été enregistrées ici, dont 58 y nichent. L’absence de rongeurs et la pression relativement stable exercée par les prédateurs ont donné lieu à la grande abondance de nombreuses espèces d’oiseaux, soit les lagopèdes des saules (Lagopus lagopus), plusieurs espèces d’oies, certains échassiers et des passereaux. Au cours de l’histoire des études ornithologiques de Kolgouev échelonnée sur 125 ans, la faune aviaire de l’île a changé considérablement. On y observe une tendance vers l’augmentation de la proportion d’espèces répandues et d’espèces sibériennes, et vers la diminution de la proportion d’espèces de l’Arctique. Depuis 2006, la faune aviaire de l’île de Kolgouev a fait l’objet d’une surveillance rigoureuse, ce qui a permis de tracer la dynamique des densités des populations d’oiseaux. L’abondance de pluviers argentés (Pluvialis squatarola) et de bécasseaux variables (Calidris alpina) a diminué, tandis que le nombre de bernaches nonnettes (Branta leucopsis) s’est accru brusquement depuis les années 1980. Par ailleurs, la densité de reproduction de la buse pattue a augmenté ces dernières années. La surveillance à long terme des écosystèmes de Kolgouev témoigne de la forte valeur de conservation de cette île à l’échelle internationale en raison de la densité de reproduction de nombreuses espèces d’oiseaux. Notre étude, qui porte sur plus d’un siècle d’études de la faune aviaire ayant fait l’objet de travaux de surveillance quasi annuels au cours des trois décennies, fournit une série chronologique inhabituellement longue et détaillée pour une île de l’Arctique.Остров Колгуев (69˚05′ с. ш., 49˚15′ в. д.) расположен в Печорском море, в юго-восточной части Баренцева моря. Экосистема острова нетипична ввиду полного отсутствия грызунов и таких специализированных миофагов, как мелкие куньи. В то же время на острове обычны такие неспециализированные хищники, как песец (Vulpes lagopus) и обыкновенная лисица (V. vulpes), а также не менее характерным обитателем острова является зимняк (Buteo lagopus). В настоящее время здесь зарегистрировано 111 видов птиц из них 58 гнездящихся. Отсутствие грызунов и относительно стабильный пресс хищников привели к высокой численности многих видов птиц: белой куропатки (Lagopus lagopus), нескольких видов гусей, некоторых куликов и воробьиных. За более чем столетнюю историю орнитологических исследований на острове Колгуев орнитофауна острова претерпела существенные изменения. Наблюдается тенденция к увеличению доли широкоареальных и сибирских видов при уменьшении доли арктических видов. С 2006 года проводится тщательный мониторинг орнитофауны Колгуева, в течение которого удалось проследить динамику плотности населения птиц. Численность некоторых куликов (тулес (Pluvialis squatarola), чернозобик (Calidris alpina)) снизилась, в то время как численность белощекой казарки (Branta leucopsis) резко возросла с первой регистрации гнездования этого вида на острове в 1980-х гг. В последние годы также существенно увеличилась плотность гнездования зимняка. Долговременный мониторинг экосистем Колгуева показал высокую международную природоохранную ценность острова из-за высокой плотности гнездования многих видов птиц. Наше исследование, охватывающее более чем вековой период орнитологических исследований с почти ежегодным мониторингом в течение последних трех десятилетий, обеспечивает необычайно длинные и подробные временные ряды для арктического острова

    Visual lateralization in flight : Lateral preferences in parent‐offspring relative positions in geese

    No full text
    Visual lateralization arises from the differential processing of information by the two brain hemispheres and can manifest itself in animal behaviour in the form of lateral preferences. Current evidence suggests that social coordination serves as a driving force for the emergence of one-sided behavioural preferences in the populations. Collective movement is one of the most basic and ubiquitous examples of coordinated behaviour. Very little is known, however, about lateralized social interactions in such a complex and sensory demanding movement mode as flight. In the present study, we aimed at investigating lateralization in parent-offspring interactions during migratory and nonmigratory flights in greater white-fronted geese. Analyzing the GPS tracks of 19 goose families, we showed individual lateral preferences in the position of juvenile birds relative to a parent in nearly half of the juveniles. A population-level preference to follow the mother on her left side was shown in juveniles during migratory flights but not in other analyses. This preference, differently from previous findings in mammals implicating a right eye bias, may be explained by the left hemisphere advantage for the functions involved in following behaviour of migrating birds, e.g., focussed attention. This highlights different drivers of lateralization in collective movement in relation to situation-specific demands.publishe

    Ecological and phylogenetic aspects of the spring diet of three palaearctic species of swans

    No full text
    Abstract The quality of swans' nutrition at spring migration stopovers is important for their successful breeding. It is of great interest to study the differences in nutrition of different swan species when sharing the same habitat. Microscopic analysis of Cygnus olor, C. cygnus, and C. columbianus bewickii feces collected in the eastern part of the Gulf of Finland in February-April 2014–2019 was performed. We measured food preferences of the three swan species using non-metric multidimensional scaling (NMDS). The width and overlap of dietary niches were also calculated. The diet of C. olor consists almost entirely of soft submerged aquatic vegetation, mainly macroalgae. Samples of the other two species except macroalgae contained large amounts of young shoots and roots of rigid semi-submerged and coastal vegetation. The dietary niche of C. cygnus is the most isolated because it is dominated by thick rhizomes of Phragmites australis, which are hardly used by other swan species. The diet of Bewick’s swans was similar in many respects to that of the Mute swan, but Bewick’s swans much more often preferred vegetative parts of submerged and semi-submerged plants, such as Stuckenia pectinata, Potamogeton perfoliatus, Sparganium sp., Nuphar lutea, and others. Notably, the dietary niches of Mute swan and Whooper swan overlapped as much as possible in February March during a period of severe food shortage, in contrast to later periods in spring when food was more abundant and varied. In general, differences in diets are well explained by differences in the morphology of birds. Comparison of tarsometatarsus indices shows that C. olor is the most water-related species. C. olor has the longest neck and its beak has the strongest filter features, whereas beaks of the other two species shows noticeable “goose-like grazing” features. Moreover, C. Cygnus has the most powerful beak. These features are due to the history of species. The formation of C. olor occurred during the Miocene-Pliocene of the Palaearctic in the warm eutrophic marine lagoons of the Paratethys with abundant soft submerged vegetation. The evolution of C. cygnus and C. c. bewickii took place in Pleistocene. At that time, periglacial and thermokarst water bodies on permafrost became widespread in the Palearctic, as well as dystrophic peat lakes with much poorer submerged aquatic vegetation, but well-developed coastal and semi-submerged vegetation
    corecore