10 research outputs found

    Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression

    Get PDF
    BACKGROUND: Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing essentiality of genomic loci under different environmental conditions. Various analytical methods have been described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions. However, for large-scale experiments involving many conditions, a method is needed for identifying genes that exhibit significant variability in insertions across multiple conditions. RESULTS: In this paper, we introduce a novel statistical method for identifying genes with significant variability of insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection of M. tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv cultures exposed to multiple antibiotics. CONCLUSIONS: Our results show that, not only does ZINB generally identify most of the genes found by pairwise resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB model

    The Mycobacterium tuberculosis transposon sequencing database (MtbTnDB): a large-scale guide to genetic conditional essentiality [preprint]

    Get PDF
    Characterization of gene essentiality across different conditions is a useful approach for predicting gene function. Transposon sequencing (TnSeq) is a powerful means of generating genome-wide profiles of essentiality and has been used extensively in Mycobacterium tuberculosis (Mtb) genetic research. Over the past two decades, dozens of TnSeq screens have been published, yielding valuable insights into the biology of Mtb in vitro, inside macrophages, and in model host organisms. However, these Mtb TnSeq profiles are distributed across dozens of research papers within supplementary materials, which makes querying them cumbersome and assembling a complete and consistent synthesis of existing data challenging. Here, we address this problem by building a central repository of publicly available TnSeq screens performed in M. tuberculosis, which we call the Mtb transposon sequencing database (MtbTnDB). The MtbTnDB encompasses 64 published and unpublished TnSeq screens, and is standardized, open-access, and allows users easy access to data, visualizations, and functional predictions through an interactive web-app (www.mtbtndb.app). We also present evidence that (i) genes in the same genomic neighborhood tend to have similar TnSeq profiles, and (ii) clusters of genes with similar TnSeq profiles tend to be enriched for genes belonging to the same functional categories. Finally, we test and evaluate machine learning models trained on TnSeq profiles to guide functional annotation of orphan genes in Mtb. In addition to facilitating the exploration of conditional genetic essentiality in this important human pathogen via a centralized TnSeq data repository, the MtbTnDB will enable hypothesis generation and the extraction of meaningful patterns by facilitating the comparison of datasets across conditions. This will provide a basis for insights into the functional organization of Mtb genes as well as gene function prediction

    Cyclic AMP in Mycobacteria: the second messenger comes first

    No full text
    Cyclic AMP (cAMP) has emerged as a pivotal molecule for signalling in all life forms. Mycobacterial genomes have been found to encode for numerous proteins that are involved in cAMP generation, degradation and utilization. Many of these proteins have domain organizations unique to mycobacteria. This review summarizes recent advances in mechanisms of cAMP synthesis and degradation, focusing on the processes by which cAMP modulates mycobacterial signalling. We explore its impact on the physiology of the organism and on the discourse between M. tuberculosis and its host

    Paralogous cAMP Receptor Proteins in Mycobacterium smegmatis Show Biochemical and Functional Divergence

    No full text
    The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the ?msmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism

    Autoinhibitory mechanism and activity-related structural changes in a mycobacterial adenylyl cyclase

    No full text
    An adenylyl cyclase from Mycobacterium avium, Mal 120, is a functional orthologue of a pseudogene Rv1120c from Mycobacterium tuberculosis. We report the crystal structure of Mal 120 in a monomeric form and its truncated construct as a dimer. Mal 120 exists as a monomer in solution and crystallized as a monomer in the absence of substrate or inhibitor. An additional alpha-helix present at the N-terminus of the monomeric structure blocks the active site by interacting with the substrate binding residues and occupying the dimer interface region. However, the enzyme has been found to be active in solution, indicating the movement of the helix away from the interface to facilitate the formation of active dimers in conditions favourable for catalysis. Thus, the N-terminal helix of Ma1120 keeps the enzyme in an autoinhibited state when it is not active. Deletion of this helix enabled us to crystallize the molecule as an active homodimer in the presence of a P-site inhibitor 2',5'-dideoxy-3'-ATP, or pyrophosphate along with metal ions. The substrate specifying lysine residue plays a dual role of interacting with the substrate and stabilizing the dimer. The dimerization loop region harbouring the second substrate specifying residue, an aspartate, shows significant differences in conformation and position between the monomeric and dimeric structures. Thus, this study has not only revealed that significant structural transitions are required for the interconversion of the inactive and the active forms of the enzyme, but also provided precise nature of these transitions. (C) 2015 Elsevier Inc. All rights reserved

    The adenylyl cyclase Rv2212 modifies the proteome and infectivity of Mycobacterium bovis BCG

    No full text
    All organisms have the capacity to sense and respond to environmental changes. These signals often involve the use of second messengers such as cyclic adenosine monophosphate (cAMP). This second messenger is widely distributed among organisms and coordinates gene expression related with pathogenesis, virulence, and environmental adaptation. Genomic analysis in Mycobacterium tuberculosis has identified 16 adenylyl cyclases (AC) and one phosphodiesterase, which produce and degrade cAMP, respectively. To date, ten AC have been biochemically characterized and only one (Rv0386) has been found to be important during murine infection with M. tuberculosis. Here, we investigated the impact of hsp60-driven Rv2212 gene expression in Mycobacterium bovis Bacillus Calmette-Guerin (BCG) during growth in vitro, and during macrophage and mice infection. We found that hsp60-driven expression of Rv2212 resulted in an increased capacity of replication in murine macrophages but an attenuated phenotype in lungs and spleen when administered intravenously in mice. Furthermore, this strain displayed an altered proteome mainly affecting proteins associated with stress conditions (bfrB, groEL-2, DnaK) that could contribute to the attenuated phenotype observed in mice
    corecore