9 research outputs found

    Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning

    Get PDF
    Rotary jet spinning (RJS) and electrospinning are techniques to obtain fibrous scaffolds. RJS is a simple method, which fabricates three-dimensional fibers by exploiting a high-speed rotating nozzle, creating a polymer jet which stretches until solidification, and does not require high voltage. In opposite, electrospinning technique needs the presence of an external electric field to create fiber from the polymeric jet solution. This article investigates both processes using two different biocompatible polymers: Poly(L-lactic acid) (PLLA) and Poly(e-caprolactone) (PCL). Samples were characterized by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimeter, and Fourier-transform infrared spectroscopy. Morphological observations showed the efficiency of both techniques in obtaining nanofibers. Thermal analyses of data indicate immiscible property of different blends and the total solvent evaporation. In vitro cytocompatibility test showed that RJS and electrospinning samples exhibited good cytocompatibility. Based on these results, it may be concluded that the fibers obtained with both technologies are non-cytotoxicity and with good biocompatibility, and might be suitable for applications as scaffold for cell growth.CAPESFAPESPBiofabris-INCTBiomaterials Laboratory PUC/SP SorocabaUniv Estadual Campinas, Fac Engn Mecan, Campinas, SP, BrazilPontificia Univ Catolica, Sao Paulo, SP, BrazilUniv Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Santos, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Santos, SP, BrazilFAPESP: 2013/19372-0Web of Scienc

    Process For Producing Porous Inserts Made Of Hydroxyapatite And Tricalcium Phosphate, Inserts Produced By Same And Use Thereof

    No full text
    PROCESSO DE OBTENÇÃO DE PASTILHAS POROSAS DE HIDROXIAPATITA E FOSFATO TRICÁLCICO, PASTILHAS ASSIM OBTIDAS E USO DAS MESMAS. A presente invenção trata-se de um processo de obtenção de pastilhas formadas por nanopartículas de biomateriais cerâmicos, com controle de volume e tamanho dos poros interconectados. As pastilhas apresentam porosidade adequada para a adesão e para o espalhamento celular, facilitando a neoformação óssea, com aplicação direcionada para o preenchimento de defeitos ósseos causados por doenças ou acidentes.BR102012029104 (A2)A61L27/12A61C13/00A61F2/28A61F2/30A61L27/56A61L27/58BR20121029104A61L27/12A61C13/00A61F2/28A61F2/30A61L27/56A61L27/5

    Method For Producing Porous Bodies Made Of Hydroxyapatite And Tricalcium Phosphate, Thus Produced Porous Bodies And Use Of The Same

    No full text
    A presente invenção trata-se de um processo de obterão de esponjas formadas por nano partículas de biomateriais cerâmicos, com poros interconectados. As esponjas podem ser implantadas com ou sem células para auxiliar regeneração óssea na engenharia tecidual.BR102012032608 (A2)C04B38/06C04B35/64BR20121032608C04B38/06C04B35/6

    Dispositivo Com Encaixe Para PrÓtese Em RegiÃo AtrÓfica Desdentada

    No full text
    DISPOSITIVO COM ENCAIXE PARA PRÓTESE EM REGIÃO ATRÓFICA DESDENTADA. A presente invenção trata de um dispositivo intra-oral que permite a reabilitação oral em pacientes com regiões ósseas atróficas, permitindo a realização de próteses em regiões, que anteriormente não poderiam ser reabilitadas. Este dispositivo se adapta ao local cirúrgico ficando justaposto ao osso e após sua osteointegração permite a fixação da parte protética.BR102012026428 (A2)A61C8/00BR20121026428A61C8/0

    Microstructural and mechanical characterization of a custom-built implant manufactured in titanium alloy by direct metal laser sintering

    No full text
    Custom-built implants manufacture has always presented difficulties which result in high cost and complex fabrication, mainly due to patients' anatomical differences. The solution has been to produce prostheses with different sizes and use the one that best suits each patient. Additive manufacturing technology, incorporated into the medical field in the late 80's, has made it possible to obtain solid biomodels facilitating surgical procedures and reducing risks. Furthermore, this technology has been used to produce implants especially designed for a particular patient, with sizes, shapes, and mechanical properties optimized, for different areas of medicine such as craniomaxillofacial surgery. In this work, the microstructural and mechanical properties of Ti6Al4V samples produced by direct metal laser sintering (DMLS) are studied. The microstructural and mechanical characterizations have been made by optical and scanning electron microscopy, X-ray diffraction, and microhardness and tensile tests. Samples produced by DMLS have a microstructure constituted by hexagonal alpha ' martensite with acicular morphology. An average microhardness of 370 HV was obtained and the tensile tests showed ultimate strength of 1172 MPa, yield strength of 957 MPa, and elongation at rupture of 11%CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP573661/2008-12008/57860-3; 2010/05321-

    The importance of understanding differences in a critical size model: a preliminary in vivo study using tibia and parietal bone to evaluate the reaction with different biomaterials

    No full text
    Many researches aim to develop different biomaterials that are compatible with natural tissues. In vitro and in vivo tests are used to evaluate this potential. Our aim was to report the importance of the critical defect's location for in vivo assays, to evaluate this approach; in vivo studies were performed, using different compositions of biomaterials in two critical size defects: tibia and parietal bone. Polycaprolactone was used as the main polymeric matrix with and without addition of hydroxyapatite. In vivo studies on the standard critical size defect in tibia and parietal bone were performed using Wistars models: 3x2 and 5x1 dimensions, respectively. The animals were sacrificed after 32 days; neobone formation was assessed with the histological data. The in vivo data demonstrated differences between the tibia and parietal bone groups: the influence of the bone on the neobone's formation was notable. All the tibia defect samples had greater neobone volume when compared to the parietal data. Indeed, these bones have distinct embryology, influence of mechanical forces and vascularization rate that are well known; moreover, these characteristics were demonstrated to be critical for neobone formation221FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2009/54546-9; 2013/19472-

    Influence of unit cell and geometry size on scaffolds electrochemical response

    No full text
    Additive manufacturing is a recent tool in medicine able to fabricate scaffolds to replace or regenerate bone tissues. The process permits the user to control scaffolds parameters such as size, unit cell, porosity, wall thickness, etc. However, the use of these three-dimensional geometries might negatively affect their corrosion behaviour. This paper studies the influence of Ti-6Al-4V ELI scaffold unit cell and, geometry size on the electrochemical response. Three different types of scaffold unit cell and three different geometry sizes were fabricated by additive manufacturing technique. The porosity of the scaffolds was studied by X-ray microtomography while surface changes, by scanning electron microscopy. Electrochemical behaviour was evaluated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in a phosphate buffered saline solution at 37 degrees C. Potentiodynamic polarization curves show that scaffolds showed a higher pitting susceptibility than solid samples at potentials higher than 1 V. EIS spectra show that the scaffolds geometry size promotes narrowing of the maximum phase angle at the high frequency range (10(2)-10(5)) due to a non-homogeneous distribution of current and potential853CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ141221/2015-1; 158744/2018-7National Council for Scientific and Technological Development (CNPq)National Council for Scientific and Technological Development (CNPq) [141221/2015-1, 158744/2018-7]; Spanish Ministry of Science, Innovation and Universities BaCTeria Project [MAT2017-86163-C2-R

    Poliuretano A Base De AÇai E Uso Para BiofabricaÇÃo De Dispositivos MÉdicos

    No full text
    POLIURETANO A BASE DE AÇAÍ E USO PARA BIOFABRICAÇÃO DE DISPOSITIVOS MÉDICOS. O presente pedido de patente de invenção refere-se a espumas rígidas de poliuretano poroso e uso da mesma como biomaterial de suporte para crescimento celular (scaffold). A invenção também se refere ao processo de produção das espumas rígidas de poliuretano citadas. Mais espeficamente, a espuma rígida de poliuretano poroso é produzida pela reação entre um poli-isocianato alifático e um poliol de base natural e renovável, o açaí, resultando em um produto apropriado para biomateriais. Uma das grandes vantagens da invenção é que o poliol do açaí possui numerosos tipos de fitoquímicos como antocianinas e flavonóides, atualmente considerados como "alimentos funcionais" com potencial para atividades anti-inflamatórias, anti-oxidantes e antitrombogênicas. Como o poliol é de base natural e renovável o poliuretano proposto possui grande aplicabilidade em biofabricação.BRPI1105296 (A2)C08G18/10C08G18/02BR2011PI05296C08G18/10C08G18/0
    corecore