458 research outputs found

    Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines

    Full text link
    Using the framework of infinite Matrix Product States, the existence of an \textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, arXiv:1610:02019], where it was shown that \textit{anomalous} cusps arise in the Loschmidt-echo return rate for sufficiently small quenches within the ferromagnetic phase. In this work we further probe the nature of the anomalous phase through calculating the corresponding Fisher-zero lines in the complex time plane. We find that these Fisher-zero lines exhibit a qualitative difference in their behavior, where, unlike in the case of the regular phase, some of them terminate before intersecting the imaginary axis, indicating the existence of smooth peaks in the return rate preceding the cusps. Additionally, we discuss in detail the infinite Matrix Product State time-evolution method used to calculate Fisher zeros and the Loschmidt-echo return rate using the Matrix Product State transfer matrix. Our work sheds further light on the nature of the anomalous phase in the long-range transverse-field Ising chain, while the numerical treatment presented can be applied to more general quantum spin chains.Comment: Journal article. 9 pages and 6 figures. Includes in part what used to be supplemental material in arXiv:1610:0201

    Quasiparticle origin of dynamical quantum phase transitions

    Full text link
    Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmidt return rate. When domain walls in the spectrum of the quench Hamiltonian are energetically favored to be bound rather than freely propagating, anomalous cusps appear in the return rate regardless of the initial state. In the nearest-neighbor limit, domain walls are always freely propagating, and anomalous cusps never appear. As a consequence, our work illustrates that models in the same equilibrium universality class can still exhibit fundamentally distinct out-of-equilibrium criticality. Our results are accessible to current ultracold-atom and ion-trap experiments.Comment: 9 pages, 8 figures, accepted versio

    Semibiotic Persistence

    No full text
    From observation, we find four different strategies to successfully enable structures to persist over extended periods of time. If functionally relevant features are very large compared to the changes that can be effectuated by entropy, the functional structure itself has a high enough probability to erode only slowly over time. If the functionally relevant features are protected from environmental influence by sacrificial layers that absorb the impinging of the environment,deterioration can be avoided or slowed. Loss of functionality can be delayed, even for complex systems, by keeping alternate options for all required components available. Biological systems also apply information processing to actively counter the impact of entropy. The latter strategy increases the overall persistence of living systems and enables them to maintain a highly complex functional organisation during their lifetime and over generations. In contrast to the other strategies, information processing has only low material overhead. While at present engineered technology is far from achieving the self-repair of evolved systems, the semibiotic combination of biological components with conventionally engineered systems may open a path to long-term persistence of functional devices in harsh environments. We review nature’s strategies for persistence, and consider early steps taken in the laboratory to import such capabilities into engineered architectures.<br/

    Provenance-based validation of E-science experiments

    No full text
    E-Science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed, it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards. Scientists may also want to review and verify experiments performed by their colleagues. There are no existing frameworks for validating such experiments in today's e-Science systems. Users therefore have to rely on error checking performed by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions. The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested in a bioinformatics application that performs protein compressibility analysis

    Prethermalization and Persistent Order in the Absence of a Thermal Phase Transition

    Get PDF
    We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions (1/rα\propto 1/r^\alpha with distance rr), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of α\alpha for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on α\alpha as well as on the quench parameters.Comment: 6 pages, 4 figure

    Optimal signal states for quantum detectors

    Full text link
    Quantum detectors provide information about quantum systems by establishing correlations between certain properties of those systems and a set of macroscopically distinct states of the corresponding measurement devices. A natural question of fundamental significance is how much information a quantum detector can extract from the quantum system it is applied to. In the present paper we address this question within a precise framework: given a quantum detector implementing a specific generalized quantum measurement, what is the optimal performance achievable with it for a concrete information readout task, and what is the optimal way to encode information in the quantum system in order to achieve this performance? We consider some of the most common information transmission tasks - the Bayes cost problem (of which minimal error discrimination is a special case), unambiguous message discrimination, and the maximal mutual information. We provide general solutions to the Bayesian and unambiguous discrimination problems. We also show that the maximal mutual information has an interpretation of a capacity of the measurement, and derive various properties that it satisfies, including its relation to the accessible information of an ensemble of states, and its form in the case of a group-covariant measurement. We illustrate our results with the example of a noisy two-level symmetric informationally complete measurement, for whose capacity we give analytical proofs of optimality. The framework presented here provides a natural way to characterize generalized quantum measurements in terms of their information readout capabilities.Comment: 13 pages, 1 figure, example section extende

    From SICs and MUBs to Eddington

    Full text link
    This is a survey of some very old knowledge about Mutually Unbiased Bases (MUB) and Symmetric Informationally Complete POVMs (SIC). In prime dimensions the former are closely tied to an elliptic normal curve symmetric under the Heisenberg group, while the latter are believed to be orbits under the Heisenberg group in all dimensions. In dimensions 3 and 4 the SICs are understandable in terms of elliptic curves, but a general statement escapes us. The geometry of the SICs in 3 and 4 dimensions is discussed in some detail.Comment: 12 pages; from the Festschrift for Tony Sudber
    corecore