Abstract

Quantum detectors provide information about quantum systems by establishing correlations between certain properties of those systems and a set of macroscopically distinct states of the corresponding measurement devices. A natural question of fundamental significance is how much information a quantum detector can extract from the quantum system it is applied to. In the present paper we address this question within a precise framework: given a quantum detector implementing a specific generalized quantum measurement, what is the optimal performance achievable with it for a concrete information readout task, and what is the optimal way to encode information in the quantum system in order to achieve this performance? We consider some of the most common information transmission tasks - the Bayes cost problem (of which minimal error discrimination is a special case), unambiguous message discrimination, and the maximal mutual information. We provide general solutions to the Bayesian and unambiguous discrimination problems. We also show that the maximal mutual information has an interpretation of a capacity of the measurement, and derive various properties that it satisfies, including its relation to the accessible information of an ensemble of states, and its form in the case of a group-covariant measurement. We illustrate our results with the example of a noisy two-level symmetric informationally complete measurement, for whose capacity we give analytical proofs of optimality. The framework presented here provides a natural way to characterize generalized quantum measurements in terms of their information readout capabilities.Comment: 13 pages, 1 figure, example section extende

    Similar works

    Full text

    thumbnail-image

    Available Versions