13 research outputs found

    Blood myo-inositol concentrations in preterm and term infants

    Get PDF
    Objective: To describe relationship between cord blood (representing fetal) myo-inositol concentrations and gestational age (GA) and to determine trends of blood concentrations in enterally and parenterally fed infants from birth to 70 days of age. Design/methods: Samples were collected in 281 fed or unfed infants born in 2005 and 2006. Myo-inositol concentrations were displayed in scatter plots and analyzed with linear regression models of natural log-transformed values. Results: In 441 samples obtained from 281 infants, myo-inositol concentrations varied from nondetectable to 1494 μmol/L. Cord myo-inositol concentrations decreased an estimated 11.9% per week increase in GA. Postnatal myo-inositol concentrations decreased an estimated 14.3% per week increase in postmenstrual age (PMA) and were higher for enterally fed infants compared to unfed infants (51% increase for fed vs. unfed infants). Conclusions: Fetal myo-inositol concentrations decreased with increasing GA. Postnatal concentrations decreased with increasing PMA and were higher among enterally fed than unfed infants

    Genome-wide association study of sepsis in extremely premature infants

    No full text
    ObjectiveTo identify genetic variants associated with sepsis (early-onset and late-onset) using a genome-wide association (GWA) analysis in a cohort of extremely premature infants.Study designPreviously generated GWA data from the Neonatal Research Network's anonymised genomic database biorepository of extremely premature infants were used for this study. Sepsis was defined as culture-positive early-onset or late-onset sepsis or culture-proven meningitis. Genomic and whole-genome-amplified DNA was genotyped for 1.2 million single-nucleotide polymorphisms (SNPs); 91% of SNPs were successfully genotyped. We imputed 7.2 million additional SNPs. p Values and false discovery rates (FDRs) were calculated from multivariate logistic regression analysis adjusting for gender, gestational age and ancestry. Target statistical value was p<10−5. Secondary analyses assessed associations of SNPs with pathogen type. Pathway analyses were also run on primary and secondary end points.ResultsData from 757 extremely premature infants were included: 351 infants with sepsis and 406 infants without sepsis. No SNPs reached genome-wide significance levels (5×10−8); two SNPs in proximity to FOXC2 and FOXL1 genes achieved target levels of significance. In secondary analyses, SNPs for ELMO1, IRAK2 (Gram-positive sepsis), RALA, IMMP2L (Gram-negative sepsis) and PIEZO2 (fungal sepsis) met target significance levels. Pathways associated with sepsis and Gram-negative sepsis included gap junctions, fibroblast growth factor receptors, regulators of cell division and interleukin-1-associated receptor kinase 2 (p values<0.001 and FDR<20%).ConclusionsNo SNPs met genome-wide significance in this cohort of extremely low birthweight infants; however, areas of potential association and pathways meriting further study were identified

    Blood Myo-Inositol Concentrations in Preterm and Term Infants

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. Objective: To describe relationship between cord blood (representing fetal) myo-inositol concentrations and gestational age (GA) and to determine trends of blood concentrations in enterally and parenterally fed infants from birth to 70 days of age. Design/Methods: Samples were collected in 281 fed or unfed infants born in 2005 and 2006. Myo-inositol concentrations were displayed in scatter plots and analyzed with linear regression models of natural log-transformed values. Results: In 441 samples obtained from 281 infants, myo-inositol concentrations varied from nondetectable to 1494 μmol/L. Cord myo-inositol concentrations decreased an estimated 11.9% per week increase in GA. Postnatal myo-inositol concentrations decreased an estimated 14.3% per week increase in postmenstrual age (PMA) and were higher for enterally fed infants compared to unfed infants (51% increase for fed vs. unfed infants). Conclusions: Fetal myo-inositol concentrations decreased with increasing GA. Postnatal concentrations decreased with increasing PMA and were higher among enterally fed than unfed infants

    Blood Cytokine Profiles Associated with Distinct Patterns of Bronchopulmonary Dysplasia among Extremely Low Birth Weight Infants

    No full text
    corecore