1,495 research outputs found
Observations and Modelling of Line Intensity Ratios of O V Multiplet Lines for 2s3s (35) - 2s3p (3PJ)
Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars
Curiosity landed on plains to the north of Mount Sharp in August 2012. By June 2016 the rover had traversed 12.9 km to the southwest, encountering extensive strata that were deposited in a fluvial-deltaic-lacustrine system. Initial drives across sharp sandstone outcrops initiated an unacceptably high rate of punctures and cracks in the thin aluminum wheel skin structures. Initial damage was found to be related to the drive control mode of the six wheel drive actuators and the kinematics of the rocker-bogie suspension. Wheels leading a suspension pivot were forced onto sharp, immobile surfaces by the other wheels as they maintained their commanded angular velocities. Wheel damage mechanisms such as geometry-induced stress concentration cracking and low-cycle fatigue were then exacerbated. A geomorphic map was generated to assist in planning traverses that would minimize further wheel damage. A steady increase in punctures and cracks between landing and June 2016 was due in part because of drives across the sharp sandstone outcrops that could not be avoided. Wheel lifetime estimates show that with careful path planning the wheels will be operational for an additional ten kilometers or more, allowing the rover to reach key strata exposed on the slopes of Mount Sharp
Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.
Most monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans1-3. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity4,5. ADCY3 localizes to the primary cilia of neurons 6 , organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases in which obesity is a cardinal manifestation 7 . We demonstrate that MC4R colocalizes with ADCY3 at the primary cilia of a subset of hypothalamic neurons, that obesity-associated MC4R mutations impair ciliary localization and that inhibition of adenylyl cyclase signaling at the primary cilia of these neurons increases body weight. These data suggest that impaired signaling from the primary cilia of MC4R neurons is a common pathway underlying genetic causes of obesity in humans
Not just for romance: applications of speed dating in social work education
In this article we address how a contemporary adaptation of the \u27speed dating\u27 model was used for educational purposes with two cohorts of social work students. We outline the dimensions of \u27speed dating\u27 as a contemporary social phenomenon, then address how this model relates specifically to groupwork process, and can be used to facilitate social work student learning. The curriculum for two classroom group activities using the \u27speed dating\u27 model are outlined, the first to develop university level study skills, the second for debriefing field placement learning experiences. Finally we examine why the \u27speed dating\u27 metaphor was successful in provoking a playful yet constructively creative space for students to engage in groupwork process.<br /
Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.
It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution
Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting
Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype.
Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot).
Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin
- …
