92 research outputs found
Results of experiments for the detection of lunar ionosphere carried out on the first moon's artificial satellite /Luna-10/
Lunik X experiments to detect lunar ionospher
Pressure balance at the magnetopause: Experimental studies
The pressure balance at the magnetopause is formed by magnetic field and
plasma in the magnetosheath, on one side, and inside the magnetosphere, on the
other side. In the approach of dipole earth's magnetic field configuration and
gas-dynamics solar wind flowing around the magnetosphere, the pressure balance
predicts that the magnetopause distance R depends on solar wind dynamic
pressure Pd as a power low R ~ Pd^alpha, where the exponent alpha=-1/6. In the
real magnetosphere the magnetic filed is contributed by additional sources:
Chapman-Ferraro current system, field-aligned currents, tail current, and
storm-time ring current. Net contribution of those sources depends on
particular magnetospheric region and varies with solar wind conditions and
geomagnetic activity. As a result, the parameters of pressure balance,
including power index alpha, depend on both the local position at the
magnetopause and geomagnetic activity. In addition, the pressure balance can be
affected by a non-linear transfer of the solar wind energy to the
magnetosheath, especially for quasi-radial regime of the subsolar bow shock
formation proper for the interplanetary magnetic field vector aligned with the
solar wind plasma flow.Comment: 8 pages, 2 figure
Recommended from our members
Noble gases from the interstellar medium trapped on the MIR space station and analyzed by in vacuo etching
Introduction: The composition of the present interstellar medium (ISM) provides an important benchmark in cosmochemistry. It serves as a reference for galactic chemical evolution (GCE) models, solar mixing predictions and provides information for understanding Big Bang nucleosynthesis. The present-day ISM 3He abundance allows, combined with the protosolar 3He, deduced from the Jovian atmosphere or meteorites [1,2], tracing the GCE over the past 4.56 Ga. 3He/4He = (2.5 0.6) x 10-4 has been determined for the local ISM [3]. However, the uncertainty is too large to better constrain GCE models and - in combination with the present-day solar wind value - the protosolar D/H [4]
Intershock observations during STIP intervals 17 and 18
The Prognoz-10/Intercosmos satellite (Intershock Project) carried out observations from Earth orbit from 26 April 1985 until 11 November 1985, covering STIP Intervals XVII and XVIII. Data obtained during the systematic measurements in the course of STIP Interval XVII and part of XVIII are presented; i.e., hourly averages of the solar wind velocity, temperature and ion concentration, ion flux changes (10 to the -1 to 10 to the -3 Hz), plasma wave parameters, energetic particles flux, magnetic fields, etc. Special attention is paid to solar wind distrubances causing abrupt and large effects on the shape of the bow shock (i.e., on 2 May 1985 and 14 September 1985). Generally, the observation period was very close to a minimum of solar activity and was quiet without significant interplanetary shocks
Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations
International audienceThe arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF) and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA), the Interplanetary Shock Propagation Model (ISPM) and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2) were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV) have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks) and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr) was in the range of 0.7?0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver) which directly influenced energetic particle rise times. This model also illustrated the non-uniform upstream conditions through which the various shocks propagated; furthermore it simulated shock deformation on a scale of fractions of an AU. On the spatial scale (300 RE ), where near-Earth spacecraft are located, the passing shocks, in conformity with the models, were found to be locally planar. The shocks also showed tilting relative to the Sun-Earth line, probably reflecting the inherent directionality associated with their solar origin. Key words. Interplanetary physics (energetic particles; interplanetary shocks; solar wind plasma
- …