147 research outputs found

    Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption

    Get PDF
    X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using second-harmonic-generation and X-ray diffraction. Collagen breaks down by cascades of photon-electron excitations, enhanced by the presence of mineral nanoparticles. We observe protein disintegration with increasing exposure, detected as residual strain relaxation in pre-stressed apatite nanocrystals. Damage rapidly grows from the onset of irradiation, suggesting that there is no minimal ‘safe’ dose that bone collagen can sustain. Ionization of calcium and phosphorous in the nanocrystals yields fluorescence and high energy electrons giving rise to structural damage that spreads beyond regions directly illuminated by the incident radiation. Our findings highlight photoelectrons as major agents of damage to bone collagen with implications to all situations where bones are irradiated by hard X-rays and in particular for small-beam mineralized collagen fiber investigations

    Colour and chemical stability of bismuth oxide in dental materials with solutions used in routine clinical practice

    Get PDF
    Bismuth(III) oxide is included as a radio-opacifier in dental materials, including hydraulic silicate cements, the material of choice for several endodontic procedures. It has been implicated in tooth discoloration after contact with endodontic irrigants, in particular NaOCl solution, To date, there has been no work on the chemistry: all reports have been of clinical findings only. The purpose now was to report the reactions leading to colour change from Bi2O3 in contact with solutions used in routine endodontic practice. Ten-gram portions of Bi2O3 were immersed in either water, NaOH, NaCl, NaOCl or HCl solution, either in the dark or exposed to visible light, and samples retrieved at 1, 4, 12 and 24 weeks. After washing, these were exposed to either added CO2 or not, for 1 week while drying, and under the same dark or light conditions. Changes in appearance were monitored by photography and colour measurement, and chemically by X-ray diffraction and Fourier-transform infrared spectroscopy. 24-week material was studied using electron paramagnetic resonance and Raman spectroscopy; NaOCl-treated material was also examined by scanning electron microscopy. With water, NaCl and NaOH, bismuth subcarbonate was formed. With or without added carbon dioxide, discoloration occurred from pale yellow to light brown when exposed to light, and to a lesser extent in the dark, intensifying with time. In contrast, exposure to NaOCl rapidly formed a dark brown-black sodium bismuthate. With HCl, white BiOCl was formed. Bi2O3 is not at all inert in this context as is commonly believed, denying its principle of use. Previously unreported solution-mediated reaction occurs readily even in water and NaCl solution, forming new compounds that discolour. In contact with NaOCl sodium bismuthate is formed; severe darkening occurs rapidly. The reactivity is such that Bi2O3 is not indicated for dental materials and should be withdrawn from use

    Gaps at the interface between dentine and self‐adhesive resin cement in post‐endodontic restorations quantified in 3D by phase contrast‐enhanced micro‐CT

    Get PDF
    Aim: To assess the extent of gaps between root dentine and titanium or fibreglass post restorations following cementation with a self-adhesive resin cement. Methodology: Fourteen root filled maxillary central incisors restored with prefabricated posts made of Fibreglass (n = 7) or Titanium (n = 7) and cemented with RelyX Unicem 2 were imaged by rapid, high-resolution phase contrast-enhanced micro-CT (PCE-CT) in a synchrotron X-ray imaging facility (ID19, ESRF, 34 KeV, 0.65 ”m pixel resolution). Reconstructions were used to measure canal, cement and post perimeters and cross-sectional areas and interfacial gaps at 0.1 mm increments in the root canal space, along the cervical region of the tooth. Remnants of endodontic sealer (AH Plus), when present, were also quantified. Mann–Whitney and 2-way ANOVA tests were used to compare findings within slices and between the two post groups. Pearson correlation coefficients (r) were determined between the interfacial gaps and the other measured parameters. Results: Clearly detectable gaps were found in 45% (±14%) of the interfaces between dentine and cement, along the canal in the cervical area of the tooth beneath the core. The length of interfacial gaps was moderately correlated to the canal cross-sectional area, to the canal perimeter and to the canal area filled by cement (R = 0.52 ~ 0.55, P 0.01). Both post types had defect-free interfaces with cement. Endodontic sealer remnants were found on ~10% of the canal walls and were moderately correlated to the presence of gaps. Approximately 30% of the sealer-affected interfaces exhibited no detachment between dentine, sealer and cement. Conclusions: Self-adhesive cements had interfacial gaps along substantial regions of the root canal surface, which was not correlated with the amount of cement in the canal. PCE-CT proved to be an excellent non-destructive method to study root canal restorations of hydrated samples in 3D

    Nanofatigue behaviour of single struts of cast A356.0 foam: cyclic deformation, nanoindent characteristics and sub-surface microstructure

    Get PDF
    Struts are the main load carrying elements in cyclically loaded open cell metal foams. Little is known about the local fatigue behaviour and the influence of the microstructure on nanoscale deformation mechanisms. Different to the bulk counterpart, the millimetre-sized struts in precision-cast AlSi7Mg0.3 foams contain only 1–2 Al-dendrites, Si-Al-eutectic and intermetallic phases. We applied cyclic nanoindentation to N = 105 to assess nanofatigue. The change in minimum depth per cycle and the ratio of minimum to maximum indentation depths versus the number of cycles correspond to cyclic plastic processes. These and the indent and pile-up morphologies were correlated with the microstructure and dislocation formations revealed by phase-contrast-enhanced micro-computed tomography and transmission electron microscopy. Our results reveal that Si-particles affect deformation within 5 to 10 ÎŒm from the indent, and that they favour the formation of fatigue induced dislocation cells in the affected volume. We believe that this interaction is mediated through residual stresses. Furthermore, local variations in microstructure strongly influence the cyclic deformation behaviour and the indent pile-up size and morphology. Interestingly, the results well coincide with observations during fatigue of the bulk alloy reported in the literature.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitĂ€t BerlinDFG, 73847914, SPP 1420: Biomimetic Materials Research: Functionality by Hierarchical Structuring of Material

    An early myeloma bone disease model in skeletally mature mice as a platform for biomaterial characterization of the extracellular matrix

    No full text
    Multiple myeloma (MM) bone disease is characterized by osteolytic bone tissue destruction resulting in bone pain, fractures, vertebral collapse, and spinal cord compression in patients. Upon initial diagnosis of MM, almost 80% of patients suffer from bone disease. Earlier diagnosis and intervention in MM bone disease would potentially improve treatment outcome and patient survival. New preclinical models are needed for developing novel diagnostic markers of bone structural changes as early as possible in the disease course. Here, we report a proof-of-concept, syngeneic, intrafemoral MOPC315.BM MM murine model in skeletally mature BALB/c mice for detection and characterization of very early changes in the extracellular matrix (ECM) of MM-injected animals. Bioluminescence imaging (BLI) in vivo confirmed myeloma engraftment in 100% of the animals with high osteoclast activity within 21 days after tumor cell inoculation. Early signs of aggressive bone turnover were observed on the outer bone surfaces by high-resolution microcomputed tomography (microCT). Synchrotron phase contrast-enhanced microcomputer tomography (PCE-CT) revealed very local microarchitecture differences highlighting numerous active sites of erosion and new bone at the micrometer scale. Correlative backscattered electron imaging (BSE) and confocal laser scanning microscopy allowed direct comparison of mineralized and nonmineralized matrix changes in the cortical bone. The osteocyte lacunar-canalicular network (OLCN) architecture was disorganized, and irregular-shaped osteocyte lacunae were observed in MM-injected bones after 21 days. Our model provides a potential platform to further evaluate pathological MM bone lesion development at the micro- and ultrastructural levels. These promising results make it possible to combine material science and pharmacological investigations that may improve early detection and treatment of MM bone disease

    Ptychographic X-ray nanotomography quantifies mineral distributions in human dentine

    Get PDF
    Bones are bio-composites with biologically tunable mechanical properties, where a polymer matrix of nanofibrillar collagen is reinforced by apatite mineral crystals. Some bones, such as antler, form and change rapidly, while other bone tissues, such as human tooth dentine, develop slowly and maintain constant composition and architecture for entire lifetimes. When studying apatite mineral microarchitecture, mineral distributions or mineralization activity of bone-forming cells, representative samples of tissue are best studied at submicrometre resolution while minimizing sample-preparation damage. Here, we demonstrate the power of ptychographic X-ray tomography to map variations in the mineral content distribution in three dimensions and at the nanometre scale. Using this non-destructive method, we observe nanostructures surrounding hollow tracts that exist in human dentine forming dentinal tubules. We reveal unprecedented quantitative details of the ultrastructure clearly revealing the spatially varying mineralization density. Such information is essential for understanding a variety of natural and therapeutic effects for example in bone tissue healing and ageing

    Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone

    No full text
    Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone coexist in healing bone. Similar to all bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes that are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals. The structure of the LCN is also hypothesized to influence mineralization processes. Hence, the aim of the present study was to visualize and correlate spatial variations in the LCN topology with mineral characteristics, within and at the interfaces of the different tissue types that comprise healing bone. We applied a correlative multi-method approach to visualize the LCN architecture and quantify mineral particle size and orientation within healing femoral bone in a mouse osteotomy model (26 weeks old C57BL/6 mice). This approach revealed structural differences across several length scales during endochondral ossification within the following regions: calcified cartilage, bony callus, cortical bone and the transition zone between the cortical region and callus that developed during 21 days after the osteotomy. In this transition zone, we observed a continuous convergence of mineral characteristics and osteocyte lacunae shape as well as discontinuities in the lacunae volume and LCN connectivity. The bony callus exhibits a 34% higher lacunae number density with 40% larger lacunar volume compared to cortical bone. The presented correlations between LCN architecture and mineral characteristics improves our understanding of how bone develops during healing and may indicate a contribution of osteocytes to bone (re)modeling

    Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self absorption

    Get PDF
    X rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in situ collagen backbone degradation in dry bones using second harmonic generation and X ray diffraction. Collagen breaks down by cascades of photon electron excitations, enhanced by the presence of mineral nanoparticles. We observe protein disintegration with increasing exposure, detected as residual strain relaxation in pre stressed apatite nanocrystals. Damage rapidly grows from the onset of irradiation, suggesting that there is no minimal safe dose that bone collagen can sustain. Ionization of calcium and phosphorous in the nanocrystals yields fluorescence and high energy electrons giving rise to structural damage that spreads beyond regions directly illuminated by the incident radiation. Our findings highlight photoelectrons as major agents of damage to bone collagen with implications to all situations where bones are irradiated by hard X rays and in particular for small beam mineralized collagen fiber investigation

    Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

    Get PDF
    In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy

    A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone), tactile (electrical stimulation to the index finger), visual (simple figure of a star), and noxious (intra-epidermal electrical stimulation to the dorsum of the hand) stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers.</p> <p>Results</p> <p>Results of source modeling showed multimodal activations in the anterior part of the cingulate cortex (ACC) and hippocampal region (Hip). The activity in the ACC was biphasic. In all sensory modalities, the first component of ACC activity peaked 30–56 ms later than the peak of the major modality-specific activity, the second component of ACC activity peaked 117–145 ms later than the peak of the first component, and the activity in Hip peaked 43–77 ms later than the second component of ACC activity.</p> <p>Conclusion</p> <p>The temporal sequence of activations through modality-specific and multimodal pathways was similar among all sensory modalities.</p
    • 

    corecore