111 research outputs found

    Mutations in Radial Spoke Head Genes and Ultrastructural Cilia Defects in East-European Cohort of Primary Ciliary Dyskinesia Patients

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial spoke head (RSPH) proteins, elements of the ciliary ultrastructure, have been recently described. However, the relative involvement of RSPH genes in PCD pathogenesis remained unknown, due to a small number of PCD families examined for mutations in these genes. The purpose of this study was to estimate the involvement of RSPH4A and RSPH9 in PCD pathogenesis among East Europeans (West Slavs), and to shed more light on ultrastructural ciliary defects caused by mutations in these genes. The coding sequences of RSPH4A and RSPH9 were screened in PCD patients from 184 families, using single strand conformational polymorphism analysis and sequencing. Two previously described (Q109X; R490X) and two new RSPH4A mutations (W356X; IVS3_2–5del), in/around exons 1 and 3, were identified; no mutations were found in RSPH9. We estimate that mutations in RSPH4A, but not in RSPH9, are responsible for 2–3% of cases in the East European PCD population (4% in PCD families without situs inversus; 11% in families preselected for microtubular defects). Analysis of the SNP-haplotype background provided insight into the ancestry of repetitively found mutations (Q109X; R490X; IVS3_2–5del), but further studies involving other PCD cohorts are required to elucidate whether these mutations are specific for Slavic people or spread among other European populations. Ultrastructural defects associated with the mutations were analyzed in the transmission electron microscope images; almost half of the ciliary cross-sections examined in patients with RSPH4A mutations had the microtubule transposition phenotype (9+0 and 8+1 pattern). While microtubule transposition was a prevalent ultrastructural defect in cilia from patients with RSPH4A mutations, similar defects were also observed in PCD patients with mutations in other genes

    Population specificity of the DNAI1 gene mutation spectrum in primary ciliary dyskinesia (PCD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>DNAI1 </it>gene, encoding a component of outer dynein arms of the ciliary apparatus, are the second most important genetic cause of primary ciliary dyskinesia (PCD), the genetically heterogeneous recessive disorder with the prevalence of ~1/20,000. The estimates of the <it>DNAI1 </it>involvement in PCD pathogenesis differ among the reported studies, ranging from 4% to 10%.</p> <p>Methods</p> <p>The coding sequence of <it>DNAI1 </it>was screened (SSCP analysis and direct sequencing) in a group of PCD patients (157 families, 185 affected individuals), the first ever studied large cohort of PCD patients of Slavic origin (mostly Polish); multiplex ligation-dependent probe amplification (MLPA) analysis was performed in a subset of ~80 families.</p> <p>Results</p> <p>Three previously reported mutations (IVS1+2-3insT, L513P and A538T) and two novel missense substitutions (C388Y and G515S) were identified in 12 families (i.e. ~8% of non-related Polish PCD patients). The structure of background SNP haplotypes indicated common origin of each of the two most frequent mutations, IVS1+2-3insT and A538T. MLPA analysis did not reveal any significant differences between patients and control samples. The Polish cohort was compared with all the previously studied PCD groups (a total of 487 families): IVS1+2-3insT remained the most prevalent pathogenetic change in <it>DNAI1 </it>(54% of the mutations identified worldwide), and the increased global prevalence of A538T (14%) was due to the contribution of the Polish cohort.</p> <p>Conclusions</p> <p>The worldwide involvement of <it>DNAI1 </it>mutations in PCD pathogenesis in families not preselected for ODA defects ranges from 7 to 10%; this global estimate as well as the mutation profile differs in specific populations. Analysis of the background SNP haplotypes suggests that the increased frequency of chromosomes carrying A538T mutations in Polish patients may reflects local (Polish or Slavic) founder effect. Results of the MLPA analysis indicate that no large exonic deletions are involved in PCD pathogenesis.</p

    In vitro culturing of ciliary respiratory cells—a model for studies of genetic diseases

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare genetic disorder caused by the impaired functioning of ciliated cells. Its diagnosis is based on the analysis of the structure and functioning of cilia present in the respiratory epithelium (RE) of the patient. Abnormalities of cilia caused by hereditary mutations closely resemble and often overlap with defects induced by the environmental factors. As a result, proper diagnosis of PCD is difficult and may require repeated sampling of patients’ tissue, which is not always possible. The culturing of differentiated cells and tissues derived from the human RE seems to be the best way to diagnose PCD, to study genotype–phenotype relations of genes involved in ciliary dysfunction, as well as other aspects related to the functioning of the RE. In this review, different methods of culturing differentiated cells and tissues derived from the human RE, along with their potential and limitations, are summarized. Several considerations with respect to the factors influencing the process of in vitro differentiation (cell-to-cell interactions, medium composition, cell-support substrate) are also discussed

    Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    Get PDF
    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease

    Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans

    Get PDF
    This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities

    MNS1 Is Essential for Spermiogenesis and Motile Ciliary Functions in Mice

    Get PDF
    During spermiogenesis, haploid round spermatids undergo dramatic cell differentiation and morphogenesis to give rise to mature spermatozoa for fertilization, including nuclear elongation, chromatin remodeling, acrosome formation, and development of flagella. The molecular mechanisms underlining these fundamental processes remain poorly understood. Here, we report that MNS1, a coiled-coil protein of unknown function, is essential for spermiogenesis. We find that MNS1 is expressed in the germ cells in the testes and localizes to sperm flagella in a detergent-resistant manner, indicating that it is an integral component of flagella. MNS1–deficient males are sterile, as they exhibit a sharp reduction in sperm production and the remnant sperm are immotile with abnormal short tails. In MNS1–deficient sperm flagella, the characteristic arrangement of “9+2” microtubules and outer dense fibers are completely disrupted. In addition, MNS1–deficient mice display situs inversus and hydrocephalus. MNS1–deficient tracheal motile cilia lack some outer dynein arms in the axoneme. Moreover, MNS1 monomers interact with each other and are able to form polymers in cultured somatic cells. These results demonstrate that MNS1 is essential for spermiogenesis, the assembly of sperm flagella, and motile ciliary functions

    HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    Get PDF
    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme

    Post hoc immunostaining of GABAergic neuronal subtypes following in vivo two-photon calcium imaging in mouse neocortex

    Get PDF
    GABAergic neurons in the neocortex are diverse with regard to morphology, physiology, and axonal targeting pattern, indicating functional specializations within the cortical microcircuitry. Little information is available, however, about functional properties of distinct subtypes of GABAergic neurons in the intact brain. Here, we combined in vivo two-photon calcium imaging in supragranular layers of the mouse neocortex with post hoc immunohistochemistry against the three calcium-binding proteins parvalbumin, calretinin, and calbindin in order to assign subtype marker profiles to neuronal activity. Following coronal sectioning of fixed brains, we matched cells in corresponding volumes of image stacks acquired in vivo and in fixed brain slices. In GAD67-GFP mice, more than 95% of the GABAergic cells could be unambiguously matched, even in large volumes comprising more than a thousand interneurons. Triple immunostaining revealed a depth-dependent distribution of interneuron subtypes with increasing abundance of PV-positive neurons with depth. Most importantly, the triple-labeling approach was compatible with previous in vivo calcium imaging following bulk loading of Oregon Green 488 BAPTA-1, which allowed us to classify spontaneous calcium transients recorded in vivo according to the neurochemically defined GABAergic subtypes. Moreover, we demonstrate that post hoc immunostaining can also be applied to wild-type mice expressing the genetically encoded calcium indicator Yellow Cameleon 3.60 in cortical neurons. Our approach is a general and flexible method to distinguish GABAergic subtypes in cell populations previously imaged in the living animal. It should thus facilitate dissecting the functional roles of these subtypes in neural circuitry

    Zebrafish KrĂŒppel-Like Factor 4a Represses Intestinal Cell Proliferation and Promotes Differentiation of Intestinal Cell Lineages

    Get PDF
    BACKGROUND:Mouse krĂŒppel-like factor 4 (Klf4) is a zinc finger-containing transcription factor required for terminal differentiation of goblet cells in the colon. However, studies using either Klf4(-/-) mice or mice with conditionally deleted Klf4 in their gastric epithelia showed different results in the role of Klf4 in epithelial cell proliferation. We used zebrafish as a model organism to gain further understanding of the role of Klf4 in the intestinal cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the function of klf4a, a mammalian klf4 homologue by antisense morpholino oligomer knockdown. Zebrafish Klf4a shared high amino acid similarities with human and mouse Klf4. Phylogenetic analysis grouped zebrafish Klf4a together with both human and mouse Klf4 in a branch with high bootstrap value. In zebrafish, we demonstrate that Klf4a represses intestinal cell proliferation based on results of BrdU incorporation, p-Histone 3 immunostaining, and transmission electron microscopy analyses. Decreased PepT1 expression was detected in intestinal bulbs of 80- and 102-hours post fertilization (hpf) klf4a morphants. Significant reduction of alcian blue-stained goblet cell number was identified in intestines of 102- and 120-hpf klf4a morphants. Embryos treated with Îł-secretase inhibitor showed increased klf4a expression in the intestine, while decreased klf4a expression and reduction in goblet cell number were observed in embryos injected with Notch intracellular domain (NICD) mRNA. We were able to detect recovery of goblet cell number in 102-hpf embryos that had been co-injected with both klf4a and Notch 1a NICD mRNA. CONCLUSIONS/SIGNIFICANCE:This study provides in vivo evidence showing that zebrafih Klf4a is essential for the repression of intestinal cell proliferation. Zebrafish Klf4a is required for the differentiation of goblet cells and the terminal differentiation of enterocytes. Moreover, the regulation of differentiation of goblet cells in zebrafish intestine by Notch signaling at least partially mediated through Klf4a
    • 

    corecore