76 research outputs found

    Nonprofit foundations spur translational research

    Get PDF
    Every year, hundreds of promising basic discoveries in the pharmacological field are lost and will never have a chance to be exploited for patients due to difficulties in clinical translation. This is especially true for most neurodegenerative disorders lacking disease-modifying therapies. Here we present the current scenario and our vision of a 'collective-impact' multistakeholder approach to expedite the development of new drugs

    Steps towards collective sustainability in biomedical research

    Get PDF
    The optimism surrounding multistakeholder research initiatives does not match the clear view of policies that are needed to exploit the potential of these collaborations. Here we propose some action items that stem from the integration between research advancements with the perspectives of patient-advocacy organizations, academia, and industry

    Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study has investigated the protein tyrosine phosphatase H1 (PTPH1) expression pattern in mouse brain and its impact on CNS functions.</p> <p>Methods</p> <p>We have previously described a PTPH1-KO mouse, generated by replacing the PTP catalytic and the PDZ domain with a LacZ neomycin cassette. PTPH1 expression pattern was evaluated by LacZ staining in the brain and PTPH1-KO and WT mice (n = 10 per gender per genotype) were also behaviorally tested for CNS functions.</p> <p>Results</p> <p>In CNS, PTPH1 is expressed during development and in adulthood and mainly localized in hippocampus, thalamus, cortex and cerebellum neurons. The behavioral tests performed on the PTPH1-KO mice showed an impact on working memory in male mice and an impaired learning performance at rotarod in females.</p> <p>Conclusion</p> <p>These results demonstrate for the first time a neuronal expression of PTPH1 and its functionality at the level of cognition.</p

    Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PTPH1 is a protein tyrosine phosphatase expressed in T cells but its effect on immune response is still controversial. PTPH1 dephosphorylates TCRzeta <it>in vitro</it>, inhibiting the downstream inflammatory signaling pathway, however no immunological phenotype has been detected in primary T cells derived from PTPH1-KO mice. The aim of the present study is to characterize PTPH1 phenotype in two <it>in vivo </it>inflammatory models and to give insights in possible PTPH1 functions in cytokine release.</p> <p>Methods</p> <p>We challenged PTPH1-KO mice with two potent immunomodulatory molecules, carrageenan and LPS, in order to determine PTPH1 possible role in inflammatory response <it>in vivo</it>. Cytokine release, inflammatory pain and gene expression were investigated in challenged PTPH1-WT and KO mice.</p> <p>Results</p> <p>The present study shows that carrageenan induces a trend of slightly increased spontaneous pain sensitivity in PTPH1-KO mice compared to WT (wild-type) littermates, but no differences in cytokine release, induced pain perception and cellular infiltration have been detected between the two genotypes in this mouse model. On the other hand, LPS-induced TNFα, MCP-1 and IL10 release was significantly reduced in PTPH1-KO plasma compared to WTs 30 and 60 minutes post challenge. No cytokine release modulation was detectable 180 minutes post LPS challenge.</p> <p>Conclusion</p> <p>In conclusion, the present study points out a slight potential role for PTPH1 in spontaneous pain sensitivity and it indicates that this phosphatase might play a role in the positive regulation of the LPS-induced cytokines release <it>in vivo</it>, in contrast to previous reports indicating PTPH1 as potential negative regulator of immune response.</p

    The Multiple Sclerosis Care Unit

    Get PDF
    Treatment of multiple sclerosis (MS) has become increasingly multifaceted and comprises not only a variety of disease-modifying drugs with different mechanism of action but also a wide range of symptomatic therapies. Today, it is not possible for the family physician or even many general neurologists to master the current treatment algorithm, and this calls for the establishment of multidisciplinary MS Care Units. The core of the MS Care Unit would, in addition to MS neurologists and nurses, typically comprise neuropsychologists, clinical psychologists, physiotherapists, occupational therapists and secretaries, and will work together with a group of different specialists on formalized diagnostic workup procedures, protocols for initiation and follow-up of disease-modifying therapies. It is obvious that the terms of performance of different MS Care Units will vary across regions and need to be balanced with clinical practice according to local conditions. Although the main objective for establishment of MS Care Units will be to offer the single MS patient seamless and correct management of the disease to increase patient satisfaction and quality of life, it may even be cost-effective for the society by maintaining the working ability and reducing the costs of home help and custodial care by keeping people with MS resourceful

    The MULTI-ACT model: the path forward for participatory and anticipatory governance in health research and care

    Get PDF
    The COVID-19 pandemic has unmasked even more clearly the need for research and care to form a unique and interdependent ecosystem, a concept which has emerged in recent years. In fact, to address urgent and unexpected missions such as "fighting all together the COVID-19 pandemic", the importance of multi-stakeholder collaboration, mission-oriented governance and flexibility has been demonstrated with great efficacy. This calls for a policy integration strategy and implementation of responsible research and innovation principles in health, promoting an effective cooperation between science and society towards a shared mission. This article describes the MULTI-ACT framework and discusses how its innovative approach, encompassing governance criteria, patient engagement and multidisciplinary impact assessment, represents a holistic management model for structuring responsible research and innovation participatory governance in brain conditions research

    Accelerated Axonal Loss Following Acute CNS Demyelination in Mice Lacking Protein Tyrosine Phosphatase Receptor Type Z

    Get PDF
    Protein tyrosine phosphatase receptor type Z (Ptprz) is widely expressed in the mammalian central nervous system and has been suggested to regulate oligodendrocyte survival and differentiation. We investigated the role of Ptprz in oligodendrocyte remyelination after acute, toxin-induced demyelination in Ptprz null mice. We found neither obvious impairment in the recruitment of oligodendrocyte precursor cells, astrocytes, or reactive microglia/macrophage to lesions nor a failure for oligodendrocyte precursor cells to differentiate and remyelinate axons at the lesions. However, we observed an unexpected increase in the number of dystrophic axons by 3 days after demyelination, followed by prominent Wallerian degeneration by 21 days in the Ptprz-deficient mice. Moreover, quantitative gait analysis revealed a deficit of locomotor behavior in the mutant mice, suggesting increased vulnerability to axonal injury. We propose that Ptprz is necessary to maintain central nervous system axonal integrity in a demyelinating environment and may be an important target of axonal protection in inflammatory demyelinating diseases, such as multiple sclerosis and periventricular leukomalacia. (Am J Pathol 2012, 181:1518-1523; http://dx.doi.org/10.1016/j.ajpath.2012.07.011)UK Multiple Sclerosis SocietyMultiple Sclerosis International FederationUniv Cambridge, Dept Vet Med, Cambridge CB3 0ES, EnglandUniv Cambridge, Wellcome Trust & MRC Cambridge Stem Cell Inst, Cambridge CB3 0ES, EnglandUniversidade Federal de São Paulo, Dept Biosci, Santos, BrazilMerck Serono Int, Geneva Res Ctr, Geneva, SwitzerlandUniversidade Federal de São Paulo, Dept Biosci, Santos, BrazilWeb of Scienc

    Brain activity pattern changes after adaptative working memory training in multiple sclerosis

    Get PDF
    Cognitive impairment and related abnormal brain activity are common in people with multiple sclerosis (PwMS). Adaptive training based on working memory (WM) has been shown to ameliorate cognitive symptoms, although the effects at a neural level are unclear. The aim of this study was to expand the existing research on the effects of an adaptive WM rehabilitative intervention on brain functional activity in PwMS. A sample of eighteen PwMS performed an 8-week home-based cognitive rehabilitation treatment based on adaptive WM training. PwMS were assessed before and after treatment using a validated neuropsychological battery and undergoing an fMRI session while carrying out a cognitive task (i.e., Paced Visual Serial Addition Test - PVSAT). fMRI activations were compared to the activation pattern elicited by eighteen matched healthy subjects performing the same task. At baseline, we found abnormal brain activity during PVSAT in PwMS when compared to healthy subjects, with a pattern including several bilateral activation clusters. Following rehabilitation, PwMS improved cognitive performance, as evaluated by the neuropsychological battery, and showed a different activation map with clusters mainly located in the right cerebellum and in the left hemisphere. The only significant cluster in the right hemisphere was located in the inferior parietal lobule, and the BOLD signal extracted in this area significantly correlated with cognitive performance both before and after the treatment. We suggest that WM training can improve the cognitive performance and reduce the abnormal activation of PwMS by partially maintaining or even restoring brain cognitive function

    Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth

    Get PDF
    Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion

    Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis

    Get PDF
    OBJECTIVE: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS).METHODS: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results.RESULTS: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p =0.015) with increased risk of severe COVID-19. Recent use (&lt;1month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p =0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses.INTERPRETATION: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists. ANN NEUROL 2021
    • …
    corecore