154 research outputs found

    Evaluation of a questionnaire to detect the risk of developing ESGD or EGGD in horses

    Get PDF
    Equine gastric ulcer syndrome (EGUS) affects various categories of horses worldwide. This syndrome is now divided into two different diseases, based on the presence of lesions on either the squamous (Equine Squamous Gastric Disease, ESGD) or the glandular (Equine Glandular Gastric Disease, EGGD) mucosa. Diagnosis is based on the evaluation of the presence of gastric lesions with gastroscopic examination. As a gastroscopy can be considered expensive by clients, therapy is started often on the basis of clinical signs only. The aim of this study was to validate a questionnaire to detect the risk of developing ESGD or EGGD. The owners of 418 horses that were submitted to gastroscopic evaluation were asked to answer a questionnaire on risk factors for ESGD and EGGD. Horses were divided into three groups based on the results of the questionnaire and their risk of developing gastric lesions. In our population the survey was not useful to detect the presence and the severity of the lesions detected during gastroscopic examination, however answers to some of the questions did correlate with the development of gastric lesions. The questionnaire could therefore be a useful tool to evaluate the risk of ESGD or EGGD. Having owners periodically complete the survey could also make them more aware of changes in the conditions of the horses that could lead to gastric lesions. This could then help them seek advice from veterinarians on how to manage this potential ris

    Case-Control Cohort Study of Patients' Perceptions of Disability in Mastocytosis

    Get PDF
    BACKGROUND: Indolent forms of mastocytosis account for more than 90% of all cases, but the types and type and severity of symptoms and their impact on the quality of life have not been well studied. We therefore performed a case-control cohort study to examine self-reported disability and impact of symptoms on the quality of life in patients with mastocytosis. METHODOLOGY/PRINCIPAL FINDINGS: In 2004, 363 mastocytosis patients and 90 controls in France were asked to rate to their overall disability (OPA score) and the severity of 38 individual symptoms. The latter was used to calculate a composite score (AFIRMM score). Of the 363 respondents, 262 were part of an ongoing pathophysiological study so that the following data were available: World Health Organization classification, standard measures of physical and psychological disability, existence of the D816V KIT mutation, and serum tryptase level. The mean OPA and AFIRMM scores and the standard measures of disability indicated that most mastocytosis patients suffer from disabilities due to the disease. Surprisingly, the patient's measurable and perceived disabilities did not differ according to disease classification or presence or absence of the D816V KIT mutation or an elevated (> or = 20 ng/mL) serum tryptase level. Also, 32 of the 38 AFIRMM symptoms were more common in patients than controls, but there were not substantial differences according to disease classification, presence of the D816V mutation, or the serum tryptase level. CONCLUSIONS: On the basis of these results and for the purposes of treatment, we propose that mastocytosis be first classified as aggressive or indolent and that indolent mastocytosis then be categorized according to the severity of patients' perceived symptoms and their impact on the quality of life. In addition, it appears that mastocytosis patients suffer from more symptoms and greater disability than previously thought, that mastocytosis may therefore be under-diagnosed, and that the symptoms of the indolent forms of mastocytosis might be due more to systemic release of mediators than mast cell burden

    Rtt107 Phosphorylation Promotes Localisation to DNA Double-Stranded Breaks (DSBs) and Recombinational Repair between Sister Chromatids

    Get PDF
    Efficient repair of DNA double-stranded breaks (DSB) requires a coordinated response at the site of lesion. Nucleolytic resection commits repair towards homologous recombination, which preferentially occurs between sister chromatids. DSB resection promotes recruitment of the Mec1 checkpoint kinase to the break. Rtt107 is a target of Mec1 and serves as a scaffold during repair. Rtt107 plays an important role during rescue of damaged replication forks, however whether Rtt107 contributes to the repair of DSBs is unknown. Here we show that Rtt107 is recruited to DSBs induced by the HO endonuclease. Rtt107 phosphorylation by Mec1 and its interaction with the Smc5–Smc6 complex are both required for Rtt107 loading to breaks, while Rtt107 regulators Slx4 and Rtt101 are not. We demonstrate that Rtt107 has an effect on the efficiency of sister chromatid recombination (SCR) and propose that its recruitment to DSBs, together with the Smc5–Smc6 complex is important for repair through the SCR pathway

    Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2

    Get PDF
    The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−) and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk−/− and msk+/+ mice, but reticulocyte count was significantly increased in msk−/− mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+ erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk−/− erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk−/− mice. The spleens from msk−/− mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk+/+ mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice

    Caenorhabditis elegans HIM-18/SLX-4 Interacts with SLX-1 and XPF-1 and Maintains Genomic Integrity in the Germline by Processing Recombination Intermediates

    Get PDF
    Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR–mediated repair at stalled replication forks. A reduction in crossover recombination frequencies—accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction—support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline

    lincRNAs act in the circuitry controlling pluripotency and differentiation

    Get PDF
    Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ES cell state.Broad InstituteHarvard UniversityNational Human Genome Research Institute (U.S.)Merkin Family Foundation for Stem Cell Researc

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Get PDF
    Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Full text link
    corecore