120 research outputs found

    Downlink Power Control in User-Centric and Cell-Free Massive MIMO Wireless Networks

    Full text link
    Recently, the so-called cell-free Massive MIMO architecture has been introduced, wherein a very large number of distributed access points (APs) simultaneously and jointly serve a much smaller number of mobile stations (MSs). A variant of the cell-free technique is the user-centric approach, wherein each AP just decodes the MSs that it receives with the largest power. This paper considers both the cell-free and user-centric approaches, and, using an interplay of sequential optimization and alternating optimization, derives downlink power-control algorithms aimed at maximizing either the minimum users' SINR (to ensure fairness), or the system sum-rate. Numerical results show the effectiveness of the proposed algorithms, as well as that the user-centric approach generally outperforms the CF one.Comment: presented at the 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017), Montreal (CA), October 201

    Energy-Efficient Downlink Power Control in mmWave Cell-Free and User-Centric Massive MIMO

    Full text link
    This paper considers cell-free and user-centric approaches for coverage improvement in wireless cellular systems operating at millimeter wave frequencies, and proposes downlink power control algorithms aimed at maximizing the global energy efficiency. To tackle the non-convexity of the problems, an interaction between sequential and alternating optimization is considered. The use of hybrid analog/digital beamformers is also taken into account. The numerical results show the benefits obtained from the power control algorithm, as well as that the user-centric approach generally outperforms the cell-free one.Comment: 4 pages; to be presented at the IEEE 5G Worls Forum Conference, Santa Clara, July 2018. arXiv admin note: text overlap with arXiv:1710.0781

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Resource Allocation for Energy-Efficient 3-Way Relay Channels

    Full text link
    Throughput and energy efficiency in 3-way relay channels are studied in this paper. Unlike previous contributions, we consider a circular message exchange. First, an outer bound and achievable sum rate expressions for different relaying protocols are derived for 3-way relay channels. The sum capacity is characterized for certain SNR regimes. Next, leveraging the derived achievable sum rate expressions, cooperative and competitive maximization of the energy efficiency are considered. For the cooperative case, both low-complexity and globally optimal algorithms for joint power allocation at the users and at the relay are designed so as to maximize the system global energy efficiency. For the competitive case, a game theoretic approach is taken, and it is shown that the best response dynamics is guaranteed to converge to a Nash equilibrium. A power consumption model for mmWave board-to-board communications is developed, and numerical results are provided to corroborate and provide insight on the theoretical findings.Comment: Submitted to IEEE Transactions on Wireless Communication

    Globally Optimal Energy-Efficient Power Control and Receiver Design in Wireless Networks

    Full text link
    The characterization of the global maximum of energy efficiency (EE) problems in wireless networks is a challenging problem due to the non-convex nature of investigated problems in interference channels. The aim of this work is to develop a new and general framework to achieve globally optimal solutions. First, the hidden monotonic structure of the most common EE maximization problems is exploited jointly with fractional programming theory to obtain globally optimal solutions with exponential complexity in the number of network links. To overcome this issue, we also propose a framework to compute suboptimal power control strategies characterized by affordable complexity. This is achieved by merging fractional programming and sequential optimization. The proposed monotonic framework is used to shed light on the ultimate performance of wireless networks in terms of EE and also to benchmark the performance of the lower-complexity framework based on sequential programming. Numerical evidence is provided to show that the sequential fractional programming framework achieves global optimality in several practical communication scenarios.Comment: Accepted for publication in the IEEE Transactions on Signal Processin

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication

    Blind user detection in doubly-dispersive DS/CDMA channels

    Full text link
    In this work, we consider the problem of detecting the presence of a new user in a direct-sequence/code-division-multiple-access (DS/CDMA) system with a doubly-dispersive fading channel, and we propose a novel blind detection strategy which only requires knowledge of the spreading code of the user to be detected, but no prior information as to the time-varying channel impulse response and the structure of the multiaccess interference. The proposed detector has a bounded constant false alarm rate (CFAR) under the design assumptions, while providing satisfactory detection performance even in the presence of strong cochannel interference and high user mobility.Comment: Accepted for publication on IEEE Transactions on Signal Processin

    Optimization of Reconfigurable Intelligent Surfaces with Electromagnetic Field Exposure Constraints

    Full text link
    This work tackles the problem of maximizing the achievable rate in a reconfigurable intelligent surface (RIS)-assisted communication link, by enforcing conventional maximum power constraints and additional constraints on the maximum exposure to electromagnetic radiations of the end-users. The RIS phase shift matrix, the transmit beamforming filter, and the linear receive filter are jointly optimized, and two provably convergent and low-complexity algorithms are developed. One algorithm can be applied to general system setups, but does not guarantee global optimality. The other is shown to be provably optimal in the special case of isotropic electromagnetic exposure constraints. The numerical results show that RIS-assisted communications can ensure high data rate transmissions while guaranteeing users' exposure constraints to radio frequency emissions
    corecore