263 research outputs found

    The synthesis of the light Mo and Ru isotopes: how now, no need for an exotic solution ?

    Get PDF
    The most detailed calculations of the p-process call for its development in the O/Ne layers of Type II supernovae. In spite of their overall success in reproducing the solar system content of p-nuclides, they suggest a significant underproduction of the light Mo and Ru isotopes. On grounds of a model for the explosion of a 25 solar mass star with solar metallicity, we demonstrate that this failure might just be related to the uncertainties left in the rate of the 22Ne(alpha,n)25Mg neutron producing reaction. The latter indeed have a direct impact on the distribution of the s-process seeds for the p-process.Comment: 4 pages, 4 figures. LaTex2e with aa.cls. A&A Letters, in pres

    Dilution of zero point energies in the cosmological expansion

    Full text link
    The vacuum fluctuations of all quantum fields filling the universe are supposed to leave enormous energy and pressure contributions which are incompatible with observations. It has been recently suggested that, when the effective nature of quantum field theories is properly taken into account, vacuum fluctuations behave as a relativistic gas rather than as a cosmological constant. Accordingly, zero-point energies are tremendously diluted by the universe expansion but provide an extra contribution to radiation energy. Ongoing and future cosmological observations could offer the opportunity to scrutinize this scenario. The presence of such additional contribution to radiation energy can be tested by using primordial nucleosynthesis bounds or measured on Cosmic Background Radiation anisotropy.Comment: 8 pages, no figures. Submitted the 17th of March to Modern Physics Letters

    Renormalization-Group flow for the field strength in scalar self-interacting theories

    Get PDF
    We consider the Renormalization-Group coupled equations for the effective potential V(\phi) and the field strength Z(\phi) in the spontaneously broken phase as a function of the infrared cutoff momentum k. In the k \to 0 limit, the numerical solution of the coupled equations, while consistent with the expected convexity property of V(\phi), indicates a sharp peaking of Z(\phi) close to the end points of the flatness region that define the physical realization of the broken phase. This might represent further evidence in favor of the non-trivial vacuum field renormalization effect already discovered with variational methods.Comment: 10 pages, 3 Figures, version accepted for publication in Phys. Lett.

    Scaling of variables and the relation between noncommutative parameters in Noncommutative Quantum Mechanics

    Full text link
    We consider Noncommutative Quantum Mechanics with phase space noncommutativity. In particular, we show that a scaling of variables leaves the noncommutative algebra invariant, so that only the self-consistent effective parameters of the model are physically relevant. We also discuss the recently proposed relation of direct proportionality between the noncommutative parameters, showing that it has a limited applicability.Comment: Revtex4, 4 pages; version to match the published on

    An alternative heavy Higgs mass limit

    Full text link
    After commenting on the present value of the Higgs particle mass from radiative corrections, we explore the phenomenological implications of an alternative, non-perturbative renormalization of the scalar sector where the mass of the Higgs particle does not represent a measure of observable interactions at the Higgs mass scale. In this approach the Higgs particle could be very heavy, even heavier than 1 TeV, and remain nevertheless a relatively narrow resonance.Comment: 17 pages. Version accepted for publication in Journal of Physics

    The puzzle of the synthesis of the rare nuclide 138La

    Get PDF
    The calculations of the p-process in the O/Ne layers of Type II supernovae are quite successful in reproducung the solar system content of p-nuclides. They predict, however, a significant underproduction of the rare odd-odd nuclide 138La. A model for the explosion of a 25 Mo star with solar metallicity is used to suggest that electron neutrino captures on 138Ba may well be its most efficient production mechanism. The responsibility of an inadequate prediction of the 138La and 139La photodisintegration rates in the too low production of 138La is also examined quantitatively. A detailed discussion of the theoretical uncertainties in these rates suggest that the required rate changes are probably too high to be fully plausible. Their measurement would be most welcome. They would help disentangling the relative contributions of thermonuclear and neutrino processes to the 138La production.Comment: 4 pages to be published by A&A Letter

    Astrophysical constraints on the confining models : the Field Correlator Method

    Get PDF
    We explore the relevance of confinement in quark matter models for the possible quark core of neutron stars. For the quark phase, we adopt the equation of state (EoS) derived with the Field Correlator Method, extended to the zero temperature limit. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock many-body theory. We find that the currently adopted value of the gluon condensate G2≃0.006−0.007GeV4G_2 \simeq 0.006-0.007 \rm {GeV^4}, which gives a critical temperature Tc≃170MeVT_c \simeq 170 \rm MeV, produces maximum masses which are only marginally consistent with the observational limit, while larger masses are possible if the gluon condensate is increased.Comment: 7 pages, 5 figure
    • 

    corecore