2,860 research outputs found
Classical and Non-Relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles
A completely Lorentz-invariant Bohmian model has been proposed recently for
the case of a system of non-interacting spinless particles, obeying
Klein-Gordon equations. It is based on a multi-temporal formalism and on the
idea of treating the squared norm of the wave function as a space-time
probability density. The particle's configurations evolve in space-time in
terms of a parameter {\sigma}, with dimensions of time. In this work this model
is further analyzed and extended to the case of an interaction with an external
electromagnetic field. The physical meaning of {\sigma} is explored. Two
special situations are studied in depth: (1) the classical limit, where the
Einsteinian Mechanics of Special Relativity is recovered and the parameter
{\sigma} is shown to tend to the particle's proper time; and (2) the
non-relativistic limit, where it is obtained a model very similar to the usual
non-relativistic Bohmian Mechanics but with the time of the frame of reference
replaced by {\sigma} as the dynamical temporal parameter
Andreev reflection in bosonic condensates
We study the bosonic analog of Andreev reflection at a normal-superfluid
interface where the superfluid is a boson condensate. We model the normal
region as a zone where nonlinear effects can be neglected. Against the
background of a decaying condensate, we identify a novel contribution to the
current of reflected atoms. The group velocity of this Andreev reflected
component differs from that of the normally reflected one. For a
three-dimensional planar or two-dimensional linear interface Andreev reflection
is neither specular nor conjugate.Comment: 5 pages, 3 figures. Text revise
Decaying neutralino dark matter in anomalous models
In supersymmetric models extended with an anomalous different
R-parity violating couplings can yield an unstable neutralino. We show that in
this context astrophysical and cosmological constraints on neutralino decaying
dark matter forbid bilinear R-parity breaking neutralino decays and lead to a
class of purely trilinear R-parity violating scenarios in which the neutralino
is stable on cosmological scales. We have found that among the resulting models
some of them become suitable to explain the observed anomalies in cosmic-ray
electron/positron fluxes.Comment: 19 pages, 3 figures. References added, typos corrected, accepted
version in Phys Rev
Covariant Lattice Theory and t'Hooft's Formulation
We show that 't Hooft's representation of (2+1)-dimensional gravity in terms
of flat polygonal tiles is closely related to a gauge-fixed version of the
covariant Hamiltonian lattice theory. 't Hooft's gauge is remarkable in that it
leads to a Hamiltonian which is a linear sum of vertex Hamiltonians, each of
which is defined modulo . A cyclic Hamiltonian implies that ``time'' is
quantized. However, it turns out that this Hamiltonian is {\it constrained}. If
one chooses an internal time and solves this constraint for the ``physical
Hamiltonian'', the result is not a cyclic function. Even if one quantizes {\it
a la Dirac}, the ``internal time'' observable does not acquire a discrete
spectrum. We also show that in Euclidean 3-d lattice gravity, ``space'' can be
either discrete or continuous depending on the choice of quantization. Finally,
we propose a generalization of 't Hooft's gauge for Hamiltonian lattice
formulations of topological gravity dimension 4.Comment: 10 pages of text. One figure available from J.A. Zapata upon reques
Hidden variables with nonlocal time
To relax the apparent tension between nonlocal hidden variables and
relativity, we propose that the observable proper time is not the same quantity
as the usual proper-time parameter appearing in local relativistic equations.
Instead, the two proper times are related by a nonlocal rescaling parameter
proportional to |psi|^2, so that they coincide in the classical limit. In this
way particle trajectories may obey local relativistic equations of motion in a
manner consistent with the appearance of nonlocal quantum correlations. To
illustrate the main idea, we first present two simple toy models of local
particle trajectories with nonlocal time, which reproduce some nonlocal quantum
phenomena. After that, we present a realistic theory with a capacity to
reproduce all predictions of quantum theory.Comment: 16 pages, accepted for publication in Found. Phys., misprints
corrected, references update
Oscillatory decay of a two-component Bose-Einstein condensate
We study the decay of a two-component Bose-Einstein condensate with negative
effective interaction energy. With a decreasing atom number due to losses, the
atom-atom interaction becomes less important and the system undergoes a
transition from a bistable Josephson regime to the monostable Rabi regime,
displaying oscillations in phase and number. We study the equations of motion
and derive an analytical expression for the oscillation amplitude. A quantum
trajectory simulation reveals that the classical description fails for low
emission rates, as expected from analytical considerations. Observation of the
proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue
Hot high-mass accretion disk candidates
To better understand the physical properties of accretion disks in high-mass
star formation, we present a study of a 12 high-mass accretion disk candidates
observed at high spatial resolution with the Australia Telescope Compact Array
(ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in
NH3, directly associated with CH3OH Class II maser emission. From the remaining
eleven sources, six show clear signatures of rotation and/or infall motions.
These signatures vary from velocity gradients perpendicular to the outflows, to
infall signatures in absorption against ultracompact HII regions, to more
spherical infall signatures in emission. Although our spatial resolution is
~1000AU, we do not find clear Keplerian signatures in any of the sources.
Furthermore, we also do not find flattened structures. In contrast to this, in
several of the sources with rotational signatures, the spatial structure is
approximately spherical with sizes exceeding 10^4 AU, showing considerable
clumpy sub-structure at even smaller scales. This implies that on average
typical Keplerian accretion disks -- if they exist as expected -- should be
confined to regions usually smaller than 1000AU. It is likely that these disks
are fed by the larger-scale rotating envelope structure we observe here.
Furthermore, we do detect 1.25cm continuum emission in most fields of view.Comment: 21 pages, 32 figures, accepted for ApJS. A high-resolution version
can be found at http://www.mpia.de/homes/beuther/papers.htm
- …