2,860 research outputs found

    Classical and Non-Relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles

    Full text link
    A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\sigma} as the dynamical temporal parameter

    Andreev reflection in bosonic condensates

    Full text link
    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.Comment: 5 pages, 3 figures. Text revise

    Decaying neutralino dark matter in anomalous U(1)HU(1)_H models

    Get PDF
    In supersymmetric models extended with an anomalous U(1)HU(1)_H different R-parity violating couplings can yield an unstable neutralino. We show that in this context astrophysical and cosmological constraints on neutralino decaying dark matter forbid bilinear R-parity breaking neutralino decays and lead to a class of purely trilinear R-parity violating scenarios in which the neutralino is stable on cosmological scales. We have found that among the resulting models some of them become suitable to explain the observed anomalies in cosmic-ray electron/positron fluxes.Comment: 19 pages, 3 figures. References added, typos corrected, accepted version in Phys Rev

    2+12+1 Covariant Lattice Theory and t'Hooft's Formulation

    Get PDF
    We show that 't Hooft's representation of (2+1)-dimensional gravity in terms of flat polygonal tiles is closely related to a gauge-fixed version of the covariant Hamiltonian lattice theory. 't Hooft's gauge is remarkable in that it leads to a Hamiltonian which is a linear sum of vertex Hamiltonians, each of which is defined modulo 2Ď€2 \pi. A cyclic Hamiltonian implies that ``time'' is quantized. However, it turns out that this Hamiltonian is {\it constrained}. If one chooses an internal time and solves this constraint for the ``physical Hamiltonian'', the result is not a cyclic function. Even if one quantizes {\it a la Dirac}, the ``internal time'' observable does not acquire a discrete spectrum. We also show that in Euclidean 3-d lattice gravity, ``space'' can be either discrete or continuous depending on the choice of quantization. Finally, we propose a generalization of 't Hooft's gauge for Hamiltonian lattice formulations of topological gravity dimension 4.Comment: 10 pages of text. One figure available from J.A. Zapata upon reques

    Hidden variables with nonlocal time

    Full text link
    To relax the apparent tension between nonlocal hidden variables and relativity, we propose that the observable proper time is not the same quantity as the usual proper-time parameter appearing in local relativistic equations. Instead, the two proper times are related by a nonlocal rescaling parameter proportional to |psi|^2, so that they coincide in the classical limit. In this way particle trajectories may obey local relativistic equations of motion in a manner consistent with the appearance of nonlocal quantum correlations. To illustrate the main idea, we first present two simple toy models of local particle trajectories with nonlocal time, which reproduce some nonlocal quantum phenomena. After that, we present a realistic theory with a capacity to reproduce all predictions of quantum theory.Comment: 16 pages, accepted for publication in Found. Phys., misprints corrected, references update

    Oscillatory decay of a two-component Bose-Einstein condensate

    Full text link
    We study the decay of a two-component Bose-Einstein condensate with negative effective interaction energy. With a decreasing atom number due to losses, the atom-atom interaction becomes less important and the system undergoes a transition from a bistable Josephson regime to the monostable Rabi regime, displaying oscillations in phase and number. We study the equations of motion and derive an analytical expression for the oscillation amplitude. A quantum trajectory simulation reveals that the classical description fails for low emission rates, as expected from analytical considerations. Observation of the proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue

    Hot high-mass accretion disk candidates

    Full text link
    To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a 12 high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in NH3, directly associated with CH3OH Class II maser emission. From the remaining eleven sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact HII regions, to more spherical infall signatures in emission. Although our spatial resolution is ~1000AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10^4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks -- if they exist as expected -- should be confined to regions usually smaller than 1000AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25cm continuum emission in most fields of view.Comment: 21 pages, 32 figures, accepted for ApJS. A high-resolution version can be found at http://www.mpia.de/homes/beuther/papers.htm

    Guía de laboratorio de biología molecular básica en la escuela

    No full text
    • …
    corecore