85 research outputs found

    EEG-neurofeedback and executive function enhancement in healthy adults: a systematic-review

    Get PDF
    EEG-neurofeedback training (EEG-NFT) is a promising technique that supports individuals in learning to modulate their brain activity to obtain cognitive and behavioural improvements. EEG-NFT is gaining increasing attention for its potential \u201cpeak performance\u201d applications on healthy individuals. However, evidence for clear cognitive performance enhancements with healthy adults is still lacking. In particular, whether EEG-NFT represents an effective technique for enhancing healthy adults\u2019 executive functions is still controversial. Therefore, the main objective of this systematic-review is to assess whether the existing EEG-NFT studies targeting executive functions have provided reliable evidence for NFT effectiveness. To this end, we conducted a qualitative analysis of the literature since the limited number of retrieved studies did not allow us meta-analytical comparisons. Moreover, a second aim was to identify optimal frequencies as NFT targets for specifically improving executive functions. Overall, our systematic review provides promising evidence for NFT effectiveness in boosting healthy adults\u2019 executive functions. However, more rigorous NFT studies are required in order to overcome the methodological weaknesses that we encountered in our qualitative analysis

    Reprogramming of orientation columns in visual cortex : a domino effect

    Get PDF
    Abstract : Cortical organization rests upon the fundamental principle that neurons sharing similar properties are co-located. In the visual cortex, neurons are organized into orientation columns. In a column, most neurons respond optimally to the same axis of an oriented edge, that is, the preferred orientation. This orientation selectivity is believed to be absolute in adulthood. However, in a fully mature brain, it has been established that neurons change their selectivity following sensory experience or visual adaptation. Here, we show that after applying an adapter away from the tested cells, neurons whose receptive fields were located remotely from the adapted site also exhibit a novel selectivity in spite of the fact that they were not adapted. These results indicate a robust reconfiguration and remapping of the orientation domains with respect to each other thus removing the possibility of an orientation hole in the new hypercolumn. These data suggest that orientation columns transcend anatomy, and are almost strictly functionally dynamic

    Confidence and psychosis: a neuro-computational account of contingency learning disruption by NMDA blockade.

    Get PDF
    A state of pathological uncertainty about environmental regularities might represent a key step in the pathway to psychotic illness. Early psychosis can be investigated in healthy volunteers under ketamine, an NMDA receptor antagonist. Here, we explored the effects of ketamine on contingency learning using a placebo-controlled, double-blind, crossover design. During functional magnetic resonance imaging, participants performed an instrumental learning task, in which cue-outcome contingencies were probabilistic and reversed between blocks. Bayesian model comparison indicated that in such an unstable environment, reinforcement learning parameters are downregulated depending on confidence level, an adaptive mechanism that was specifically disrupted by ketamine administration. Drug effects were underpinned by altered neural activity in a fronto-parietal network, which reflected the confidence-based shift to exploitation of learned contingencies. Our findings suggest that an early characteristic of psychosis lies in a persistent doubt that undermines the stabilization of behavioral policy resulting in a failure to exploit regularities in the environment.FV was supported by the Groupe Pasteur Mutualité. RG was supported by the Fondation pour la Recherche Médicale and the Fondation Bettencourt Schueller. SP is supported by a Marie Curie Intra-European fellowship (FP7-PEOPLE-2012-IEF). AF was supported by National Health and Medical Research Council grants (IDs : 1050504 and 1066779) and an Australian Research Council Future Fellowship (ID: FT130100589). This work was supported by the Wellcome Trust and the Bernard Wolfe Health Neuroscience Fund.This is the final version of the article. It first appeared from the Nature Publishing Group via http://dx.doi.org/10.1038/mp.2015.7

    Dynamic Effective Connectivity of Inter-Areal Brain Circuits

    Get PDF
    Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question “Which areas cause the present activity of which others?”. Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early proposals, we advance here that dynamic interactions between brain rhythms provide as well the basis for the self-organized control of this “communication-through-coherence”, making thus possible a fast “on-demand” reconfiguration of global information routing modalities

    Four-Dimensional Consciousness

    Full text link

    The visual attention network untangled

    No full text
    Goals are represented in prefrontal cortex and modulate sensory processing in visual cortex. A new study combines TMS, fMRI and EEG to understand how feedback improves retention of behaviorally relevant visual information
    corecore