2,324 research outputs found
Systematic uncertainties in the precise determination of the strangeness magnetic moment of the nucleon
Systematic uncertainties in the recent precise determination of the
strangeness magnetic moment of the nucleon are identified and quantified. In
summary, G_M^s = -0.046 \pm 0.019 \mu_N.Comment: Invited presentation at PAVI '04, International Workshop on Parity
Violation and Hadronic Structure, Laboratoire de Physique Subatomique et de
Cosmologie, Grenoble, France, June 8-11, 2004. 7 pages, 16 figure
General Relativistic Magnetospheres of Slowly Rotating and Oscillating Magnetized Neutron Stars
We study the magnetosphere of a slowly rotating magnetized neutron star
subject to toroidal oscillations in the relativistic regime. Under the
assumption of a zero inclination angle between the magnetic moment and the
angular momentum of the star, we analyze the Goldreich-Julian charge density
and derive a second-order differential equation for the electrostatic
potential. The analytical solution of this equation in the polar cap region of
the magnetosphere shows the modification induced by stellar toroidal
oscillations on the accelerating electric field and on the charge density. We
also find that, after decomposing the oscillation velocity in terms of
spherical harmonics, the first few modes with are responsible for
energy losses that are almost linearly dependent on the amplitude of the
oscillation and that, for the mode , can be a factor
larger than the rotational energy losses, even for a velocity oscillation
amplitude at the star surface as small as . The results
obtained in this paper clarify the extent to which stellar oscillations are
reflected in the time variation of the physical properties at the surface of
the rotating neutron star, mainly by showing the existence of a relation
between and the oscillation amplitude. Finally, we propose a
qualitative model for the explanation of the phenomenology of intermittent
pulsars in terms of stellar oscillations that are periodically excited by star
glitches.Comment: 13 pages, 4 figures, submitted to MNRA
Electromagnetic Form Factors with FLIC fermions
The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of
nonperturbative O(a) improvement and allows efficient access to the light
quark-mass regime. FLIC fermions enable the construction of the
nonperturbatively O(a)-improved conserved vector current without the
difficulties associated with the fine tuning of the improvement coefficients.
The simulations are performed with an O(a^2) mean-field improved
plaquette-plus-rectangle gluon action on a 20^3 x 40 lattice with a lattice
spacing of 0.128 fm, enabling the first simulation of baryon form factors at
light quark masses on a large volume lattice.
Magnetic moments, electric charge radii and magnetic radii are extracted from
these form factors, and show interesting chiral nonanalytic behavior in the
light quark mass regime.Comment: Presented by J.Zanotti at the Workshop on Lattice Hadron Physics,
Cairns, Australia, 2003. 7pp, 8 figure
Explaining the subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model
We try to explain the subpulse drift phenomena adopting the space-charge
limited flow (SCLF) model and comparing the plasma drift velocity in the inner
region of pulsar magnetospheres with the observed velocity of drifting
subpulses. We apply the approach described in a recent paper of van Leeuwen &
Timokhin (2012), where it was shown that the standard estimation of the
subpulse drift velocity through the total value of the scalar potential drop in
the inner gap gives inaccurate results, while the exact expression relating the
drift velocity to the gradient of the scalar potential should be used instead.
After considering a selected sample of sources taken from the catalog of
Weltevrede, Edwards & Stappers (2006) with coherently drifting subpulses and
reasonably known observing geometry, we show that their subpulse drift
velocities would correspond to the drift of the plasma located very close or
above the pair formation front. Moreover, a detailed analysis of PSR B0826-34
and PSR B0818-41 reveals that the variation of the subpulse separation with the
pulse longitude can be successfully explained by the dependence of the plasma
drift velocity on the angular coordinates.Comment: 14 pages, 6 figures, 2 table
ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement
We present the first high order one-step ADER-WENO finite volume scheme with
Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial
accuracy is obtained through a WENO reconstruction, while a high order one-step
time discretization is achieved using a local space-time discontinuous Galerkin
predictor method. Due to the one-step nature of the underlying scheme, the
resulting algorithm is particularly well suited for an AMR strategy on
space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR
property has been implemented 'cell-by-cell', with a standard tree-type
algorithm, while the scheme has been parallelized via the Message Passing
Interface (MPI) paradigm. The new scheme has been tested over a wide range of
examples for nonlinear systems of hyperbolic conservation laws, including the
classical Euler equations of compressible gas dynamics and the equations of
magnetohydrodynamics (MHD). High order in space and time have been confirmed
via a numerical convergence study and a detailed analysis of the computational
speed-up with respect to highly refined uniform meshes is also presented. We
also show test problems where the presented high order AMR scheme behaves
clearly better than traditional second order AMR methods. The proposed scheme
that combines for the first time high order ADER methods with space--time
adaptive grids in two and three space dimensions is likely to become a useful
tool in several fields of computational physics, applied mathematics and
mechanics.Comment: With updated bibliography informatio
Light quark electromagnetic structure of baryons
Fascinating aspects of the light quark-mass behavior of baryon
electromagnetic form factors are highlighted. Using FLIC fermions on quenched -improved gauge fields, we explore charge
radii and magnetic moments at pion masses as light as 300 MeV. Of particular
interest is chiral curvature of proton charge radii and magnetic moments, the
environmental dependence of strange quark properties in hyperons, and the
remarkable signature of quenched chiral-nonanalytic behavior in the magnetic
moment of baryon resonances.Comment: 7 pages, 6 figures, Presented at the 24th International Symposium on
Lattice Field Theory (Lattice 2006), Tucson, Arizona, 23-28 Jul 200
Accessing High Momentum States In Lattice QCD
Two measures are defined to evaluate the coupling strength of smeared
interpolating operators to hadronic states at a variety of momenta. Of
particular interest is the extent to which strong overlap can be obtained with
individual high-momentum states. This is vital to exploring hadronic structure
at high momentum transfers on the lattice and addressing interesting phenomena
observed experimentally. We consider a novel idea of altering the shape of the
smeared operator to match the Lorentz contraction of the probability
distribution of the high-momentum state, and show a reduction in the relative
error of the two-point function by employing this technique. Our most important
finding is that the overlap of the states becomes very sharp in the smearing
parameters at high momenta and fine tuning is required to ensure strong overlap
with these states.Comment: 10 page
Nucleon isovector structure functions in (2+1)-flavor QCD with domain wall fermions
We report on numerical lattice QCD calculations of some of the low moments of
the nucleon structure functions. The calculations are carried out with gauge
configurations generated by the RBC and UKQCD collaborations with (2+1)-flavors
of dynamical domain wall fermions and the Iwasaki gauge action (). The inverse lattice spacing is GeV, and two spatial
volumes of ((2.7{\rm fm})^3) and ((1.8 {\rm fm})^3) are used. The up and down
quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while
the strange mass is about 12 % heavier than the physical one. The structure
function moments we present include fully non-perturbatively renormalized
iso-vector quark momentum fraction, (_{u-d}), helicity fraction, (< x
>_{\Delta u - \Delta d}), and transversity, (_{\delta u - \delta d}), as
well as an unrenormalized twist-3 coefficient, (d_1). The ratio of the momentum
to helicity fractions, (_{u-d}/_{\Delta u - \Delta d}), does not show
dependence on the light quark mass and agrees well with the value obtained from
experiment. Their respective absolute values, fully renormalized, show
interesting trends toward their respective experimental values at the lightest
quark mass. A prediction for the transversity, (0.7 _{\delta u -\delta
d} < 1.1), in the (\bar{\rm MS}) scheme at 2 GeV is obtained. The twist-3
coefficient, (d_1), though yet to be renormalized, supports the perturbative
Wandzura-Wilczek relation.Comment: 14 pages, 22 figures
Precision electromagnetic structure of decuplet baryons in the chiral regime
The electromagnetic properties of the baryon decuplet are calculated in
quenched QCD on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm using
the fat-link irrelevant clover (FLIC) fermion action with quark masses
providing a pion mass as low as 300 MeV. Magnetic moments and charge radii are
extracted from the electric and magnetic form factors for each individual quark
sector. From these, the corresponding baryon properties are constructed. We
present results for the higher order moments of the spin-3/2 baryons, including
the electric quadrupole moment E2 and the magnetic octupole moment M3. The
world's first determination of a non-zero M3 form factor for the Delta baryon
is presented. With these results we provide a conclusive analysis which shows
that decuplet baryons are deformed. We compare the decuplet baryon results from
a similar lattice calculation of the octet baryons. We establish that the
environment sensitivity is far less pronounced in the case of the decuplet
baryons compared to that in the octet baryons. A surprising result is that the
charge radii of the decuplet baryons are generally smaller than that of the
octet baryons. The magnetic moment of the Delta^+ reveals a turn over in the
low quark mass region, making it smaller than the proton magnetic moment. These
results are consistent with the expectations of quenched chiral perturbation
theory. A similar turn over is also noticed in the magnetic moment of the
Sigma^*0, but not for Xi^* where only kaon loops can appear in quenched QCD.
The electric quadrupole moment of the Omega^- baryon is positive when the
negative charge factor is included, and is equal to 0.86 +- 0.12 x 10^-2 fm^2,
indicating an oblate shape.Comment: 30 pages, 32 figure
- …