14 research outputs found

    Study of the eclipse region of the redback millisecond pulsar J1431-4715

    Get PDF
    We report on the rotational, astrometric and orbital parameters for PSR J1431-4715, and we also present a preliminary analysis of the eclipsing region. This pulsar was discovered in the High Time Resolution Universe survey and it belongs to the class of “redback” systems. The minimum estimated mass for the companion of J1431-4715 is, indeed, 0.13 M☉. Thanks to multi-frequency observations, obtained at the 64 m Parkes radio telescope, we note that the magnitude and the duration of the eclipse delay depend upon the observing frequency

    Evidence of intra-binary shock emission from the redback pulsar PSR J1048+2339

    Get PDF
    We present simultaneous multiwavelength observations of the 4.66 ms redback pulsar PSR J1048+2339. We performed phase-resolved spectroscopy with the Very Large Telescope (VLT) searching for signatures of a residual accretion disk or intra-binary shock emission, constraining the companion radial velocity semi-amplitude (K2K_2), and estimating the neutron star mass (MNSM_{\rm NS}). Using the FORS2-VLT intermediate-resolution spectra, we measured a companion velocity of 291<K2<348291 < K_2 < 348 km s1^{-1} and a binary mass ratio of 0.209<q<0.2500.209 < q < 0.250. Combining our results for K2K_2 and qq, we constrained the mass of the neutron star and the companion to (1.0<MNS<1.6)sin3iM(1.0 < M_{\rm NS} < 1.6){\rm sin}^{-3}i\,M_{\odot} and (0.24<M2<0.33)sin3iM(0.24 < M_2 < 0.33){\rm sin}^{-3}i\,M_{\odot}, respectively, where ii is the system inclination. The Doppler map of the Hα\alpha emission line exhibits a spot feature at the expected position of the companion star and an extended bright spot close to the inner Lagrangian point. We interpret this extended emission as the effect of an intra-binary shock originating from the interaction between the pulsar relativistic wind and the matter leaving the companion star. The mass loss from the secondary star could be either due to Roche-lobe overflow or to the ablation of its outer layer by the energetic pulsar wind. Contrastingly, we find no evidence for an accretion disk. We report on the results of the SRT and the LOFAR simultaneous radio observations at three different frequencies (150 MHz, 336 MHz, and 1400 MHz). No pulsed radio signal is found in our search. This is probably due to both scintillation and the presence of material expelled from the system which can cause the absorption of the radio signal at low frequencies. Finally, we report on an attempt to search for optical pulsations using IFI+Iqueye mounted at the 1.2 m Galileo telescope at the Asiago Observatory.Comment: 12 pages, 10 figures, accepted for publication in A&

    Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking

    Get PDF
    We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of ≃1 × 1036 erg s-1 in about a week, the pulsar entered a ~1 month long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of ν˙SD=−(1.15±0.06)×10−15 Hz s-1, compatible with the spin-down torque of a ≈1026 G cm3 rotating magnetic dipole. For the first time in the last twenty years, the orbital phase evolution shows evidence for a decrease of the orbital period. The long-term behavior of the orbit is dominated by an ~11 s modulation of the orbital phase epoch consistent with a ~21 yr period. We discuss the observed evolution in terms of a coupling between the orbit and variations in the mass quadrupole of the companion star

    Matter ejections behind the highs and lows of the transitional millisecond pulsar PSR J1023+0038

    Get PDF
    Transitional millisecond pulsars are an emerging class of sources that link low-mass X-ray binaries to millisecond radio pulsars in binary systems. These pulsars alternate between a radio pulsar state and an active low-luminosity X-ray disc state. During the active state, these sources exhibit two distinct emission modes (high and low) that alternate unpredictably, abruptly, and incessantly. X-ray to optical pulsations are observed only during the high mode. The root cause of this puzzling behaviour remains elusive. This paper presents the results of the most extensive multi-wavelength campaign ever conducted on the transitional pulsar prototype, PSR J1023+0038, covering from the radio to X-rays. The campaign was carried out over two nights in June 2021 and involved 12 different telescopes and instruments, including XMM-Newton, HST, VLT/FORS2 (in polarimetric mode), ALMA, VLA, and FAST. By modelling the broadband spectral energy distributions in both emission modes, we show that the mode switches are caused by changes in the innermost region of the accretion disc. These changes trigger the emission of discrete mass ejections, which occur on top of a compact jet, as testified by the detection of at least one short-duration millimetre flare with ALMA at the high-to-low mode switch. The pulsar is subsequently re-enshrouded, completing our picture of the mode switches.</p

    Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

    Get PDF
    Millisecond spinning, low-magnetic-field neutron stars are believed to attain their fast rotation in a 0.1–1-Gyr-long phase during which they accrete matter endowed with angular momentum from a low-mass companion star1. Despite extensive searches, coherent periodicities originating from accreting neutron star magnetospheres have been detected only at X-ray energies2 and in ~10% of the currently known systems3. Here we report the detection of optical and ultraviolet coherent pulsations at the X-ray period of the transient low-mass X-ray binary system SAX J1808.4−3658, during an accretion outburst that occurred in August 20194. At the time of the observations, the pulsar was surrounded by an accretion disk, displayed X-ray pulsations and its luminosity was consistent with magnetically funnelled accretion onto the neutron star. Current accretion models fail to account for the luminosity of both optical and ultraviolet pulsations; these are instead more likely to be driven by synchro-curvature radiation5,6 in the pulsar magnetosphere or just outside of it. This interpretation would imply that particle acceleration can take place even when mass accretion is going on, and opens up new perspectives in the study of coherent optical/ultraviolet pulsations from fast-spinning accreting neutron stars in low-mass X-ray binary systems

    Investigating the origin of optical and X-ray pulsations of the transitional millisecond pulsar PSR J1023+0038

    Get PDF
    Context. PSR J1023+0038 is the first millisecond pulsar that was ever observed as an optical and UV pulsar. So far, it is the only optical transitional millisecond pulsar. The rotation- and accretion-powered emission mechanisms hardly individually explain the observed characteristics of optical pulsations. A synergistic model, combining these standard emission processes, was proposed to explain the origin of the X-ray/UV/optical pulsations. Aims: We study the phase lag between the pulses in the optical and X-ray bands to gain insight into the physical mechanisms that cause it. Methods: We performed a detailed timing analysis of simultaneous or quasi-simultaneous observations in the X-ray band, acquired with the XMM-Newton and NICER satellites, and in the optical band, with the fast photometers SiFAP2 (mounted at the 3.6 m Telescopio Nazionale Galileo) and Aqueye+ (mounted at the 1.8 m Copernicus Telescope). We estimated the time lag of the optical pulsation with respect to that in the X-rays by modeling the folded pulse profiles with two harmonic components. Results: Optical pulses lag the X-ray pulses by ∼150 μs in observations acquired with instruments (NICER and Aqueye+) whose absolute timing uncertainty is much smaller than the measured lag. We also show that the phase lag between optical and X-ray pulsations lies in a limited range of values, δϕ ∈ (0 − 0.15), which is maintained over timescales of about five years. This indicates that both pulsations originate from the same region, and it supports the hypothesis of a common emission mechanism. Our results are interpreted in the shock-driven mini pulsar nebula scenario. This scenario suggests that optical and X-ray pulses are produced by synchrotron emission from the shock that formed within a few light cylinder radii away (∼100 km) from the pulsar, where its striped wind encounters the accretion disk inflow

    X-ray study of high-and-low luminosity modes and peculiar low-soft-and-hard activity in the transitional pulsar XSS J12270−4859

    Get PDF
    XSS J12270−4859 (henceforth J12270) is the first low-mass X-ray binary to exhibit a transition, taking place at the end of 2012, from an X-ray active state to a radio pulsar state. The X-ray emission based on archival XMM-Newton observations is highly variable, showing rapid variations (∼10 s) from a high X-ray luminosity mode to a low mode and back. A flaring mode has also been observed. X-ray pulsations have been detected during the high mode only. In this work we present two possible interpretations for the rapid swings between the high and low modes. In the first scenario, this phenomenon can be explained by a rapid oscillation between a propeller state and a radio-ejection pulsar state, during which the pulsar wind prevents matter from falling onto the neutron star surface. In the second scenario, a radio pulsar is always active, the intra-binary shock is located just outside the light cylinder in the high mode, while it expands during the low mode. At variance with other transitional pulsars, J12270 shows two instances of the low mode: a low-soft and low-hard mode. Performing an X-ray spectral analysis, we show that the harder component, present in the low-hard spectra, is probably related to the tail of the flare emission. This supports the understanding that the flare mechanism is independent of the high-to-low mode transitions

    Probing X-ray emission in different modes of PSR J1023+0038 with a radio pulsar scenario

    Get PDF
    Transitional pulsars provide us with a unique laboratory to study the physics of accretion onto a magnetic neutron star. PSR J1023+0038 (J1023) is the best studied of this class. We investigate the X-ray spectral properties of J1023 in the framework of a working radio pulsar during the active state. We modelled the X-ray spectra in three modes (low, high, and flare) as well as in quiescence, to constrain the emission mechanism and source parameters. The emission model, formed by an assumed pulsar emission (thermal and magnetospheric) plus a shock component, can account for the data only adding a hot dense absorber covering ∼30% of the emitting source in high mode. The covering fraction is similar in flaring mode, thus excluding total enshrouding, and decreases in the low mode despite large uncertainties. This provides support to the recently advanced idea of a mini-pulsar wind nebula (PWN), where X-ray and optical pulsations arise via synchrotron shock emission in a very close (∼100 km, comparable to a light cylinder), PWN-like region that is associated with this hot absorber. In low mode, this region may expand, pulsations become undetectable, and the covering fraction decreases
    corecore