114 research outputs found
NanoFN10: A High-Contrast Turn-On Fluorescence Nanoprobe for Multiphoton Singlet Oxygen Imaging.
An “off-on” fluorescent nanoprobe for near-infrared multiphoton imaging of singlet oxygen has been developed. The nanoprobe comprises a naphthoxazole fluorescent unit and a singlet-oxygen-sensitive furan derivative attached to the surface of mesoporous silica nanoparticles. In solution, the fluorescence of the nanoprobe increases upon reaction with singlet oxygen both under one- and multiphoton excitation, with fluorescence enhancements up to 180-fold. The nanoprobe can be readily internalized by macrophage cells and is capable of imaging intracellular singlet oxygen under multiphoton excitation.Partial funding for open access charge: Universidad de Málag
ZFP36 expression impairs glioblastoma cell lines viability and invasiveness by targeting multiple signal transduction pathways.
RNA binding proteins belonging to the TIS11/TTP gene family regulate the stability of multiple targets. Their inactivation or deregulated expression has recently been related to cancer, and it has been suggested that they are capable of displaying tumor suppressor activities. Here we describe three new targets of ZFP36 (PIM-1, PIM-3 and XIAP) and show by different approaches that its ectopic expression is capable of impairing glioblastoma cell lines viability and invasiveness by interfering with different transduction pathways. Moreover, we provide evidence that compounds capable of inducing the expression of TIS11/TTP genes determine a comparable biological effect on the same cell contexts
Insulin Receptor Substrate-1, p70S6K and Cell Size in Transformation and Differentiation of Hemopoietic Cells.
After an initial burst of cell proliferation, the type 1 insulin-like growth factor receptor (IGF-IR) induces granulocytic differentiation of 32D IGF-IR cells, an interleukin-3-dependent murine hemopoietic cell line devoid of insulin receptor substrate-1 (IRS-1). The combined expression of the IGF-IR and IRS-1 (32D IGF-IR/IRS-1 cells) inhibits IGF-I-mediated differentiation, and causes malignant transformation of 32D cells. Because of the role of IRS-1 in changing the fate of 32D IGF-IR cells from differentiation (and subsequent cell death) to malignant transformation, we have looked for differences in IGF-IR signaling between 32D IGF-IR and 32D IGF-IR/IRS-1 cells. In this report, we have focused on p70(S6K), which is activated by the IRS-1 pathway. We find that the ectopic expression of IRS-1 and the inhibition of differentiation correlated with a sustained activation of p70(S6K) and an increase in cell size. Phosphorylation in vivo of threonine 389 and, to a lesser extent, of threonine 421/serine 424 of p70(S6K) seemed to be a requirement for inhibition of differentiation. A role of IRS-1 and p70(S6K) in the alternative between transformation or differentiation of 32D IGF-IR cells was confirmed by findings that inhibition of p70(S6K) activation or IRS-1 signaling, by rapamycin or okadaic acid, induced differentiation of 32D IGF-IR/IRS-1 cells. We have also found that the expression of myeloperoxidase mRNA (a marker of differentiation, which sharply increases in 32D IGF-IR cells), does not increase in 32D IGF-IR/IRS-1 cells, suggesting that the expression of IRS-1 in 32D IGF-IR cells causes the extinction of the differentiation program initiated by the IGF-IR, while leaving intact its proliferation program
BS148 Reduces the Aggressiveness of Metastatic Melanoma via Sigma-2 Receptor Targeting
: The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer
ZFP36L1 Negatively Regulates Erythroid Differentiation of CD34+ Hematopoietic Stem Cells by Interfering with the Stat5b Pathway
ZFP36L1 negatively regulates erythroid differentiation of human hematopoietic progenitors by directly binding the 3′ UTR of Stat5b mRNA, thereby triggering its degradation. This study shows that posttranscriptional regulation is involved in the control of hematopoietic differentiation
The Value of Intraoperative Parathyroid Hormone Monitoring in Localized Primary Hyperparathyroidism: A Cost Analysis
Minimally invasive parathyroidectomy (MIP) is the preferred approach to primary hyperparathyroidism (PHPT) when a single adenoma can be localized preoperatively. The added value of intraoperative parathyroid hormone (IOPTH) monitoring remains debated because its ability to prevent failed parathyroidectomy due to unrecognized multiple gland disease (MGD) must be balanced against assay-related costs. We used a decision tree and cost analysis model to examine IOPTH monitoring in localized PHPT.
Literature review identified 17 studies involving 4,280 unique patients, permitting estimation of base case costs and probabilities. Sensitivity analyses were performed to evaluate the uncertainty of the assumptions associated with IOPTH monitoring and surgical outcomes. IOPTH cost, MGD rate, and reoperation cost were varied to evaluate potential cost savings from IOPTH.
The base case assumption was that in well-localized PHPT, IOPTH monitoring would increase the success rate of MIP from 96.3 to 98.8%. The cost of IOPTH varied with operating room time used. IOPTH reduced overall treatment costs only when total assay-related costs fell below 12,000 (compared with initial MIP cost of $3733). Setting the positive predictive value of IOPTH at 100% and reducing the false-negative rate to 0% did not substantially alter these findings.
Institution-specific factors influence the value of IOPTH. In this model, IOPTH increased the cure rate marginally while incurring approximately 4% additional cost
SeesawPred: A Web Application for Predicting Cell-fate Determinants in Cell Differentiation
Abstract Cellular differentiation is a complex process where a less specialized cell evolves into a more specialized cell. Despite the increasing research effort, identification of cell-fate determinants (transcription factors (TFs) determining cell fates during differentiation) still remains a challenge, especially when closely related cell types from a common progenitor are considered. Here, we develop SeesawPred, a web application that, based on a gene regulatory network (GRN) model of cell differentiation, can computationally predict cell-fate determinants from transcriptomics data. Unlike previous approaches, it allows the user to upload gene expression data and does not rely on pre-compiled reference data sets, enabling its application to novel differentiation systems. SeesawPred correctly predicted known cell-fate determinants on various cell differentiation examples in both mouse and human, and also performed better compared to state-of-the-art methods. The application is freely available for academic, non-profit use at http://seesaw.lcsb.uni.lu
Inactivation of CDK/pRb Pathway Normalizes Survival Pattern of Lymphoblasts Expressing the FTLD-Progranulin Mutation c.709-1G>A
8 figuras, 2 tablasBackground
Mutations in the progranulin (PGRN) gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP), although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK) CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation.
Methodology/Principal Findings
We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal.
Conclusion/Significance
The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDPThis work has been supported by grants from Ministry of Education and Science (SAF2007-61701, SAF2010-15700, SAF2011-28603), Fundación Eugenio Rodríguez Pascual, and Basque Government (Saiotek program 2008–2009). NE holds a fellowship of the JAE predoctoral program of the CSICPeer reviewe
Structure-activity study of furyl aryloxazole fluorescent probes for the detection of singlet oxygen
In this study, we report the synthesis and the photochemical behavior of a series of new "click-on" fluorescent probes designed to detect singlet oxygen. They include a highly fluorescent chemical structure, an aryloxazole ring, linked to a furan moiety operating as singlet oxygen trap. Their activity depends on both the structure of the aryloxazole fluorophore and the electron-donating and electron-accepting properties of the substituents attached to the C-5 of the furan ring. All probes are selectively oxidized by singlet oxygen to give a single fluorescent product in methanol and produce negligible amounts of singlet oxygen themselves by self-sensitization. The most promising dyad, (E)-2-(2-(5-methylfuran-2-yl)vinyl)naphtho[1,2-d]oxazole, FN-6, shows outstanding reactivity and sensitivity: it traps singlet oxygen with a rate constant (5,8 ± 0.1) x 1(07) M-1 s-1 and its fluorescence increases by a factor of 500 upon reaction. Analysis of the dyads reactivity in terms of linear free energy relationships using the modified Swain and Lupton parameter F and the Fukui condensed function for the electrophilic attack, suggests that cycloaddition of singlet oxygen to the furan ring is partially concerted and possibly involves an exciplex with a "more open" structure than could be expected for a concerted cycloaddition.status: publishe
- …