15 research outputs found

    Distributed Energy Storage Control for Dynamic Load Impact Mitigation

    Get PDF
    The future uptake of electric vehicles (EV) in low-voltage distribution networks can cause increased voltage violations and thermal overloading of network assets, especially in networks with limited headroom at times of high or peak demand. To address this problem, this paper proposes a distributed battery energy storage solution, controlled using an additive increase multiplicative decrease (AIMD) algorithm. The improved algorithm (AIMD+) uses local bus voltage measurements and a reference voltage threshold to determine the additive increase parameter and to control the charging, as well as discharging rate of the battery. The used voltage threshold is dependent on the network topology and is calculated using power flow analysis tools, with peak demand equally allocated amongst all loads. Simulations were performed on the IEEE LV European Test feeder and a number of real U.K. suburban power distribution network models, together with European demand data and a realistic electric vehicle charging model. The performance of the standard AIMD algorithm with a fixed voltage threshold and the proposed AIMD+ algorithm with the reference voltage profile are compared. Results show that, compared to the standard AIMD case, the proposed AIMD+ algorithm further improves the network’s voltage profiles, reduces thermal overload occurrences and ensures a more equal battery utilisation

    Time-of-use and time-of-export tariffs for home batteries: Effects on low voltage distribution networks

    Get PDF
    Time-of-use electricity tariffs are gradually being introduced around the world to expose consumers to the time-dependency of demand, however their effects on peak flows in distribution networks, particularly in areas with domestic energy storage, are little understood. This paper presents investigations into the impact of time-of-use and time-of-export tariffs in residential areas with various penetrations of battery storage, rooftop solar PV, and heat pumps. By simulating battery operation in response to high resolution household-level electrical and thermal demand data, it is found that home batteries operating to maximise cost savings in houses signed up to time-dependent tariffs cause little reduction in import and export peaks at the low voltage level, largely because domestic import and export peaks are spread out over time. When operating to maximise savings from the first three-tier time-of-use tariff introduced in the UK, batteries could even cause increases in peak demand at low voltage substations, if many batteries in the area commence charging at the start of the overnight off-peak price band. Home batteries operating according to time-dependent electricity tariffs significantly miss out on the potential peak shaving that could otherwise be achieved through dedicated peak shaving incentives schemes and smarter storage control strategies

    Berechnung des thermischen Verhaltens von Werkzeugmaschinen

    No full text
    corecore