3,627 research outputs found

    A comparison of assimilation results from the ensemble Kalman Filter and a reduced-rank extended Kalman Filter

    No full text
    International audienceThe goal of this study is to compare the performances of the ensemble Kalman filter and a reduced-rank extended Kalman filter when applied to different dynamic regimes. Data assimilation experiments are performed using an eddy-resolving quasi-geostrophic model of the wind-driven ocean circulation. By changing eddy viscosity, this model exhibits two qualitatively distinct behaviors: strongly chaotic for the low viscosity case and quasi-periodic for the high viscosity case. In the reduced-rank extended Kalman filter algorithm, the model is linearized with respect to the time-mean from a long model run without assimilation, a reduced state space is obtained from a small number (100 for the low viscosity case and 20 for the high viscosity case) of leading empirical orthogonal functions (EOFs) derived from the long model run without assimilation. Corrections to the forecasts are only made in the reduced state space at the analysis time, and it is assumed that a steady state filter exists so that a faster filter algorithm is obtained. The ensemble Kalman filter is based on estimating the state-dependent forecast error statistics using Monte Carlo methods. The ensemble Kalman filter is computationally more expensive than the reduced-rank extended Kalman filter.The results show that for strongly nonlinear case, chaotic regime, about 32 ensemble members are sufficient to accurately describe the non-stationary, inhomogeneous, and anisotropic structure of the forecast error covariance and the performance of the reduced-rank extended Kalman filter is very similar to simple optimal interpolation and the ensemble Kalman filter greatly outperforms the reduced-rank extended Kalman filter. For the high viscosity case, both the reduced-rank extended Kalman filter and the ensemble Kalman filter are able to significantly reduce the analysis error and their performances are similar. For the high viscosity case, the model has three preferred regimes, each with distinct energy levels. Therefore, the probability density of the system has a multi-modal distribution and the error of the ensemble mean for the ensemble Kalman filter using larger ensembles can be larger than with smaller ensembles

    Upregulation of Phosphodiesterase type 5 in the Hyperplastic Prostate

    Get PDF
    Both erectile dysfunction (ED) and lower urinary tract symptoms (LUTS)/benign prostatic hyperplasia (BPH) are common in the aging male. Numerous clinical trials have demonstrated the efficacy and safety of phosphodiesterase type 5 inhibitors (PDE5-Is) for treating LUTS/BPH with/without ED. However, the influence of BPH on prostatic PDE5 expression has never been studied. A testosterone-induced rat model of BPH was developed and human hyperplastic prostate specimens were harvested during cystoprostatectomy. PDE5, nNOS, eNOS and α1-adrenoreceptor subtypes (α1aARs, α1bARs and α1dARs) were determined with real-time RT-PCR for rat tissues whilst PDE5 and α1-adrenoreceptor subtypes were determined in human samples. PDE5 was further analyzed with Western-blot and histological examination. Serum testosterone was measured with ELISA. The rat BPH model was validated as having a significantly enlarged prostate. PDE5 localized mainly in fibromuscular stroma in prostate. Our data showed a significant and previously undocumented upregulation of PDE5 in both rat and human BPH, along with increased expression of nNOS and α1d ARs for rat tissues and α1a ARs for human BPH. The upregulation of PDE5 in the hyperplastic prostate could explain the mechanism and contribute to the high effectiveness of PDE5-Is for treating LUTS/BPH. Fibromuscular stroma could be the main target for PDE5-Is within prostate

    Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection

    Get PDF
    Potato virus Y (PVY) is a common pathogen affecting agricultural production worldwide and is mainly transmitted by Myzus persicae in a non-persistent manner. Insect-borne plant viruses can modify the abundance, performance, and behavior of their vectors by altering host plant features; however, most studies have overlooked the fact that the dynamic progression of virus infection in plants can have variable effects on their vectors. We addressed this point in the present study by dividing the PVY infection process in tobacco into three stages (early state, steady state and late state); delineated by viral copy number. We then compared the differential effects of PVY-infected tobacco (Nicotiana tabacum) plants on the host selection and feeding behavior of M. persicae. We used Y-shaped olfactory apparatus and electrical penetration graph (EPG) methods to evaluate host selection and feeding behavior, respectively. Interestingly, we found that PVY-infected plants at the steady state attracted more aphids than healthy plants, whereas no differences were observed for those at the early and late states. In terms of feeding behavior, intracellular punctures (closely related to PVY acquisition and transmission) were more abundant on PVY-infected tobacco plants at the early and steady states of infection than in uninfected plants. These results indicate that PVY-infected host plants can alter the host selection and feeding behavior of aphids in a stage-dependent manner, which is an important consideration when studying the interactions among host plants, viruses, and insect vectors. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature

    Nitrous oxide emission from highland winter wheat field after long-term fertilization

    Get PDF
    Nitrous oxide (N<sub>2</sub>O) is an important greenhouse gas. N<sub>2</sub>O emissions from soils vary with fertilization and cropping practices. The response of N<sub>2</sub>O emission to fertilization of agricultural soils plays an important role in global N<sub>2</sub>O emission. The objective of this study was to assess the seasonal pattern of N<sub>2</sub>O fluxes and the annual N<sub>2</sub>O emissions from a rain-fed winter wheat (<i>Triticum aestivum</i> L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N<sub>2</sub>O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N<sub>2</sub>O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N<sub>2</sub>O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N<sub>2</sub>O flux while N, NP and NPM treatments significantly increased N<sub>2</sub>O fluxes. The fertilizer induced increase in N<sub>2</sub>O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N<sub>2</sub>O flux. N<sub>2</sub>O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N<sub>2</sub>O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N<sub>2</sub>O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N<sub>2</sub>O-N ha<sup>−1</sup> increases, while manure + phosphorous offset 0.43 and 1.04 kg N<sub>2</sub>O-N ha<sup>−1</sup> increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N<sub>2</sub>O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N<sub>2</sub>O emissions. Relative to agricultural production and N<sub>2</sub>O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and lower N<sub>2</sub>O flux and annual emission in m than in N

    Enhancement of Friction between Carbon Nanotubes: An Efficient Strategy to Strengthen Fibers

    Full text link
    Interfacial friction plays a crucial role in the mechanical properties of carbon nanotube based fibers, composites, and devices. Here we use molecular dynamics simulation to investigate the pressure effect on the friction within carbon nanotube bundles. It reveals that the intertube frictional force can be increased by a factor of 1.5 ~ 4, depending on tube chirality and radius, when all tubes collapse above a critical pressure and when the bundle remains collapsed with unloading down to atmospheric pressure. Furthermore, the overall cross-sectional area also decreases significantly for the collapsed structure, making the bundle stronger. Our study suggests a new and efficient way to reinforce nanotube fibers, possibly stronger than carbon fibers, for usage at ambient conditions.Comment: revtex, 5 pages, accepted by ACS Nano 10 Dec 200

    Molecular-field approach to the spin-Peierls transition in CuGeO_3

    Full text link
    We present a theory for the spin-Peierls transition in CuGeO_3. We map the elementary excitations of the dimerized chain (solitons) on an effective Ising model. Inter-chain coupling (or phonons) then introduce a linear binding potential between a pair of soliton and anti-soliton, leading to a finite transition temperature. We evaluate, as a function of temperature, the order parameter, the singlet-triplet gap, the specific heat, and the susceptibility and compare with experimental data on CuGeO_3. We find that CuGeO_3 is close to a first-order phase transition. We point out, that the famous scaling law \sim\delta^{2/3} of the triplet gap is a simple consequence of the linear binding potential between pairs of solitons and anti-solitons in dimerized spin chains.Comment: 7.1 pages, figures include

    Structure of the Magneto-Exciton and Optical Properties in Fractional Quantum Hall Systems

    Full text link
    We report calculated dependence of magneto-exciton energy spectrum upon electron-hole separation dd in Fractional Quantum Hall systems. We calculated the dependence of photoluminescence upon dd, and we obtained the doublet structure observed recently. The Raman scattering spectrum around resonance is calculated: a robust resonance peak at ν=1/3\nu=1/3 around gap value is reported.Comment: 13 pages, REVTEX, compressed postscript file (3 figures included

    Transport Properties of the One Dimensional Ferromagnetic Kondo Lattice Model : A Qualitative Approach to Oxide Manganites

    Full text link
    The transport properties of the ferromagnetic Kondo lattice model in one dimension are studied via bosonization methods. The antiferromagnetic fluctuations, which normally appear because of the RKKY interactions, are explicitly taken into account as a direct exchange between the ``core'' spins. It is shown that in the paramagnetic regime with the local antiferromagnetic fluctuations, the resistivity decays exponentially as the temperature increases while in the ferromagnetic regime the system is an almost perfect conductor. %A non-perturbative description of localized spin polarons %in the paramagnetic region is obtained. The effect of a weak applied field is discussed to be reduced to the case of the ferromagnetic state leading to band splitting. The qualitative relevance of the results for the problem of the Oxide Manganites is emphasized.Comment: 4 pages, REVTe
    • …
    corecore