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Abstract Potato virus Y (PVY) is a common pathogen affecting agricultural 

production worldwide, and is mainly transmitted by Myzus persicae in a 

non-persistent manner. Insect-borne plant viruses can modify the abundance, 

performance, and behavior of their vectors by altering host plant features; however, 

most studies have overlooked the fact that the dynamic progression of virus infection 

in plants can have variable effects on their vectors. We addressed this point in the 

present study by dividing the PVY infection process in tobacco into three stages (early 

state, steady state and late state) according to viral copy number, and then compared 

the variational effects of PVY-infected tobacco (Nicotiana tabacum) plants on host 

selection and feeding behavior of M. persicae. A Y-shaped olfactory apparatus and 

electrical penetration graph (EPG) method were used to evaluate host selection and 

feeding behavior, respectively. Interestingly, we found that PVY-infected plants at the 

steady state of infection attracted more aphids than healthy plants, whereas no 

differences were observed for those at the early and late states. In terms of feeding 

behavior, intracellular punctures which are closely related to PVY acquisition and 

transmission were more abundant on PVY-infected tobacco plants at the early and 

steady states of infection than in non-infected plants. These results indicate that 

PVY-infected host plants can alter the host selection and feeding behavior of aphids in 

a stage-dependent manner manner, which is an important consideration when studying 

the interactions among host plants, virus, and insect vectors. 
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Introduction 

As a member of the family Potyviridae, Potato virus Y (PVY) has been a persistent 

problem for decades in solanaceous crops production worldwide [1]. PVY infection 

negatively impacts crop quality and reduces overall yields, resulting in significant 

economic losses [2]. PVY is mainly transmitted by aphids-e.g., green peach aphid, 

Myzus persicae (Sulzer) (Hemiptera: Aphididae), which is distributed worldwide and 

is highly polyphagous, and can damage plants both directly by feeding on their 

vascular bundles and indirectly by transmitting pathogenic viruses such as PVY and 

Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) [3]. As one of the most 

common and efficient vectors, M. persicae transmits PVY in a non-persistent manner 

during brief probes of the plant epidermis, making it very difficult to control [4]. 

To control insect-transmitted plant viruses, it is critical to clarify their effects on 

the feeding behavior and dispersal of insect vectors [5]. The transmission of 

insect-borne plant pathogens depends on the abundance and behavior of their vectors 

[6]. The behavior of insect vectors can be altered by plant pathogens; for instance, the 

frequency and nature of the virus-vector interaction can be modified to enhance 

disease transmission, and it could be altered either indirectly through the 

virus-infected host plant or directly after pathogen acquisition by the vector [7-9]. 

Several plant viruses are known to infect their insect vectors, for instance, Tomato 

spotted wilt virus (Tospovirus, Bunyaviridae)-viruliferous male Frankliniella 

occidentalis (Pergande) showed threefold higher frequency and duration of phloem 

sap feeding than non-viruliferous males, a behavior that may increase virus 

transmission efficiency [10]. Many viruses modify the behavior and performance of 

vectors to indirectly optimize their transmission. For non-persistently transmitted 

viruses such as CMV, efficient transmission to a new host usually depends on virus 

acquisition during aphid feeding and swift vector dispersal from infected plants [11]. 

M. persicae and Aphis gossypii are initially attracted to CMV-infected plants in 

response to virus-induced volatiles but are subsequently dispersed, preferentially 

settling on non-infected plants since these are superior reproductive hosts [12]. Many 

studies have reported that non-persistent viruses induce changes in the host plant to 
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enhance vector attraction, but this can reduce vector fitness on the host plant, thereby 

decreasing vector performance and promoting its rapid spread [13, 14]. 

PVY and M. persicae have been well studied as an ideal model for investigating 

the relationship between plant viruses and their insect vectors. It was reported that M. 

persicae is initially unable to discriminate between infected and healthy hosts [15, 4], 

but later develop a preference for the former after prolonged feeding; several similar 

studies have demonstrated that aphids prefer infected host plants [16]. It is thought 

that PVY chemically mediates insect–plant interactions by activating the salicylate 

pathway and decreasing plant resistance to aphid vectors [17], which could enhance 

aphid fecundity and density on PVY-infected plants [18]. However, none of these 

studies examined the dynamic relationship between PVY-infected host plants and 

aphid behavior at different stages of the virus infection process. To this end, the 

present study investigated whether the stage of PVY infection of tobacco plant affects 

the host selection and feeding behavior of aphids. 

 

Materials and Methods 

Aphid Colonies, Host Plants and Virus Culture 

M. persicae colonies were established from a single parthenogenetic female collected 

at Jimo Experimental Station (36.4454°N, 120.5862°W) in China. The colonies were 

maintained on healthy tobacco plants (Nicotiana tabacum ‘K326’) in climate 

chambers at 25℃ with 65% relative humidity on a 14:10-h light/dark cycle. Infectious 

clones of PVY (PVY-N605) were provided by the plant virus laboratory of Shandong 

Agricultural University. 

 

Virus Detection and Quantification 

Tobacco plants at the seven or eight true leaf stage were inoculated with plant tissue 

homogenate infected with PVY by mechanical friction. The plant tissue was ground 

with 10 times the equivalent volume of 0.1 M potassium phosphate buffer (pH 7.4) on 

ice. Carborundum powder was then added and the mixture was applied to the surface 

of tobacco leaves using cotton swabs [19]. Control plants were mock-inoculated in the 
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same manner with healthy tobacco plant tissue. To detect the presence of PVY in 

tobacco plants, specific primers amplifying a 535-bp fragment (PVY-F1/PVY-R1) 

were designed according to the genomic sequence of the infectious PVY clone that 

was used. The cycling parameters were as follows: 95 ℃ for 4 min, and 35 cycles of 

94 ℃ for 30 s, 54 ℃ for 30 s, and 72 ℃ for 30 s. In the preliminary experiment, we 

inoculated 10 tobacco plants by friction, and all of them were successfully infected 

(i.e., infection efficiency = 100%). 

TaqMan real-time quantitative PCR using a standard curve was carried out to 

quantify PVY copy number. A sufficient number of tobacco plants were inoculated 

with PVY at one time and leaves collected from different parts of the plant were 

quantified 3, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, and 24 days after PVY inoculation. 

Each plant was sampled only once. Total RNA extracted from plant leaves of known 

weight was prepared and the cDNA templates were obtained as previously described 

[20]. Fragments containing the primers and probes of PVY were amplified with the 

primers PVY-F /PVY-R using a program consisting of 35 cycles of 94 ℃ for 30 s, 

56 ℃ for 30 s, and 72 ℃ for 30 s. To generate the standard curve [21], PCR products 

were cloned into the pEASY-T vector (TransGen, Beijing, China); quantitative PCR 

was performed on a 7500 Fast Real-Time PCR system (Applied Biosystems, Foster 

City, CA, USA). The reaction contained the following: 2× reverse transcriptase 

(RT)-PCR buffer (10 μl), forward and reverse primers (0.4 μl each, 20 pmol/μl), 

TaqMan probe (0.8 μl, 40 pmol/μl), 50× RT-PCR enzyme mix (0.2 μl), DNA template 

(2 μl), and 6.2 μl double-distilled (dd)H2O. As the negative control for viral DNA 

extraction, cDNA from virus-free tobacco plants was used as the template; the 

no-template control was ddH2O. Thermal cycling conditions were 95 ℃ for 30 s; 40 

cycles of 95 ℃ for 5 s; and 60 ℃ for 34 s. Each sample was analyzed in triplicate. 

Primer and probe sequences are shown in Table S1. 

 

Host Selection by Aphids 

The Y-shaped olfactory apparatus was used to evaluate host choice by aphids 

(PVY-infected vs. healthy plants) as previously described [22]. Briefly, the instrument 
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was placed in a dark box and plants subjected to different treatments were 

individually placed in the flavor source bottle. A single apterous aphid (starved for 2 h) 

was placed in a Y-shaped base arm for observation. A selective reaction was noted 

when the aphid passed the halfway point of the treatment or control arm; when no 

obvious selection trend was observed after 5 min, it was regarded as no choice. The 

airflow velocity was 200 ml/min/arm. According to the results of virus quantification, 

we chose tobacco plants inoculated with PVY for 5, 12, and 24 days respectively as 

well as healthy plants of the same ages to test the selection behavior of aphids. Three 

replicates (33 or 34 apterous aphids per replicate) of each group were analyzed, and a 

total of 100 aphids were tested in each group with each aphid was tested once. The 

two arms of the olfactory instrument were exchanged after 10 aphids had been tested, 

and the tobacco plants and “Y” tube were replaced after 33 or 34 aphids had been 

tested. Each plant was used only once. The “Y” tube was cleaned with alcohol and 

dried before use. 

 

Aphid Feeding Behavior 

The electrical penetration graph (EPG) method was used to evaluate the feeding 

behavior of aphids between PVY- and mock-inoculated tobacco plants. Briefly, EPG 

waveforms were recorded using an eight-channel direct current EPG instrument 

(Wageningen University & Research, Wageningen, the Netherlands). In this 

experimental setup, aphids and plants formed an electrical circuit that was completed 

when the aphid inserted its stylet into the plant. A weak voltage was supplied to the 

circuit and any change in electrical properties was recorded as an EPG waveform that 

was correlated with the feeding activity of the aphid and site of stylet insertion into 

plant tissue. Apterous adult aphids of similar size were selected from healthy plants 

and an insect electrode was connected to their pronotum. After attachment of a 

4-cm-long gold wire electrode (diameter 0.2 mm), the aphids were starved for 2 h 

prior to the experiment, then gently placed on the back of the third leaf of each plant. 

The recording time for each trial was 6 h. The waveform produced by one aphid on 

each plant was used as a replicate for a total of 15-20 replicates. The different 
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behavioral phases were manually labeled using software Stylet+ v01.23 software 

(EPG Systems, Wageningen, The Netherlands) as follows: potential drop (pd); 

non-penetration (np; i.e., aphid stylet is outside the plant); pathway phase (C; 

penetration into non-phloem tissue), derailed stylet activity (F), salivation into sieve 

elements (E1), and ingestion of phloem sap (E2). E1/E2 transition patterns were 

included in E2. Waveform patterns that were not terminated before the end of the 

experimental period (6h) were not excluded from the calculations. The 

above-mentioned waveforms were analyzed as previously described [23], and the 

following variables were measured and compared between non-infected and infected 

plants, including time to first probe, probing frequency and duration, time to phloem 

from the start of EPG, and duration of phloem sap ingestion, which was closely 

related to non-persistent virus propagation [24] and reflects the acceptability [25] of 

the food source to aphids. 

 

Statistical Analysis 

All statistical analyses were performed using SPSS Statistics v.21 software (IBM, 

Armonk, NY, USA). Viral copy number was compared between different tobacco 

leaves by one-way analysis of variance. EPG parameters were calculated manually 

and individually for each aphid, and the mean and standard errors were determined 

using the EPG analysis Excel worksheet created for this study, and the data were 

analyzed with the Student’s t test. All data were transformed if needed to meet 

assumptions of normality using log10(x+1) if needed. The chi-square test was used to 

evaluate differences between PVY-infected and healthy tobacco plants. 

 

Results 

Dynamics of PVY Copy Number in Tobacco Plants 

We generated a standard curve for absolute quantification (Fig. S1). Using the 

neighboring leaf above the inoculated leaf, we quantified PVY copy number in the 

leaves of PVY-inoculated plants at different time points. PVY copy number differed 

significantly among samples depending on the time of virus inoculation (F = 52.748; 
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df = 6, 56; P < 0.0001) (Figure 1a): PVY copy number in tobacco infected by PVY 

within first 7 days was significantly increased, and was defined as early state; PVY 

copy number in tobacco infected by PVY between 8 and 18 days was stable, and this 

was defined as steady state; and PVY copy number in tobacco was declined with 

respect to the steady state 20 days after inoculation, which was defined as late state. 

We selected tobacco plants on day 10 after inoculation to examine the spatial 

distribution of the virus; the results indicated that PVY copy number was different in 

young and old leaves (F = 7.819; df =11, 24; P < 0.0001) (Figure 1b). 

 

Host Selection by Aphids 

The results showed that more aphids significantly selected PVY-infected tobacco 

plants 12 days after inoculation (χ2 = 0.450, P = 0.006). PVY-infected tobacco plants 

5 days after inoculation were more likely to be selected, although the trend was not 

statistically significant (χ2 = 7.515, P = 0.502). There were no differences in aphid 

preference for PVY-infected vs. healthy plants 20 days after inoculation (χ2 = 0.011, P 

= 0.917) (Fig. 2). 

 

Aphid Feeding Behavior 

EPG variables describing M. persicae stylet penetration into virus-infected and 

healthy tobacco plant leaves are shown in Table 1. At different stages of the virus 

infection, aphids exhibited distinct behaviors related to cell puncture and phloem 

feeding behavior; in general, they showed a propensity for greater intracellular 

puncture rate on virus-infected plants at early and steady states of virus infection, as 

evidenced by the total number of pds and the number of pds during the time to 

phloem from the start of EPG (Table 1, variables 2 and 7). 

At a steady state of infection, aphids spent less time in the phloem of 

virus-infected as compared to healthy plants (Table 1, variable 15); additionally, 

during this period the number of np events was higher in the former (Table 1, variable 

3). The total duration of intercellular pathway (C) events per aphid was relatively 

short in healthy plants (Table 1, variables 17 and 18), and the latency to the first 
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probing was greater in infected than in healthy plants at late state of virus infection 

(Table 1, variable 1). Throughout the infection process, F was relatively low in 

infected plants (Table 1, variable 16). However, there was no difference in the latency 

to initial probing of the phloem by analysis of variance. Likewise, there was no 

difference in the effective feeding time (E2 duration > 10 min) between aphids in the 

two groups of plants (Table 1, variable 12). 

 

Discussion 

The transmission of insect-borne plant virus depends upon the abundance and 

behavior of their vectors. Viruses employ sophisticated strategies to overcome the 

distance separating plants and penetrate the plant cell wall [26]. Our results 

demonstrate a mutualism between viruses and their vectors: virus-infected hosts 

attract more aphids and increase the number of intracellular punctures , which would 

in turn facilitates the spread of pathogenic viruses [27].  

The performance and behavior of insect vectors altered by PVY directly or 

indirectly are not fully understood. It was demonstrated that PVY has a positive effect 

on aphid vector abundance and performance [17, 28]. However, most previous studies 

have examined the behavior and physiology of vector insects in host plants 2 to 3 

weeks after inoculation [7, 28], without taking into consideration the dynamic nature 

of virus infection process. We addressed this in the present study based on the 

accumulation of PVY virus particles in tobacco plants. 

Vector insects such as aphids respond to plant volatiles by means of highly 

sensitive antennal olfactory sensilla during host searching and selection [29-31]. Virus 

infection can induce changes in host plant cues that influence vector orientation, 

feeding, and dispersal [11, 32]. It was reported that aphids are more responsive to 

volatile cues on Potato leafroll virus-infected as compared to healthy plants [30]. 

Previous studies have shown that aphid vectors exhibit higher fecundity and 

population growth on PVY-infected as compared to non-infected plants [15, 16]. 

However, there were no reports on whether aphids can proactively distinguish the 

odors of PVY-infected and healthy tobacco. In our study, we observed a close 
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relationship between the time of virus infection process on host plants and 

attractiveness to aphids; PVY-infected tobacco plants preferentially attracted aphids at 

a steady level of virus infection, while the number of aphids chose healthy and 

PVY-infected tobacco plants at early or late states of virus infection was no significant 

difference. This indicates that aphids can perceive physiological cues resulting from 

virus infection during a specific stage of the infection process. While it took 3–8 days 

for the systemic spread of PVY, the virus only had a weak inductive effect on tobacco 

plants, especially on volatile emissions. However, as the virus infected the host plant 

over a prolonged period, host plant senescence and nutrition deteriorated significantly; 

consequently, virus-infected tobacco plants became relatively poor-quality hosts for 

aphids. We speculate that plants at late state of the virus infection exhibit enhanced 

dispersal of winged aphids, thereby promoting virus transmission. 

The EPG method is widely used to monitor the feeding behavior of aphids 

[32], it allows the recording of signal waveforms corresponding to different probing 

activities as well as the position of the aphid stylet within plant tissues, which can 

provide valuable information on host acceptance and resistance mechanisms [33, 34]. 

We investigated the feeding behavior of aphids on tobacco plants with this technique; 

our results show that pd frequency on infected plants was increased in both early and 

steady states of the infection process. The most important stylet penetration parameter 

associated with enhanced acquisition of non-persistently transmitted viruses is the 

frequency of the pd waveform [35]. Aphids in this study showed a propensity towards 

PVY-infected plants, as evidenced by the higher number of intracellular punctures, 

which would ultimately increase virus transmission efficiency. 

Virus-mediated changes in aphid feeding behavior via manipulation of plant 

olfactory and gustatory cues are a well-documented mechanism for enhancing 

acquisition and transmission efficiency [36]. At steady state of the virus infection, np 

events/transient and discontinuous stylet penetrations and intercellular pathway phase 

(C) were increased on PVY-infected tobacco plants, which is associated with host 

acceptance[25]. This indicates that the acceptance of PVY-infected plants by aphids 

was diminished; however, the effective feeding times of aphids on different host 
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plants which could impact aphid reproduction and development were similar. In 

addition, aphids on infected plants showed waveform F at a low frequency compared 

to healthy plants, indicating that PVY infection made penetration easier for aphids. In 

general, aphids preferred to probe on tobacco plants that were infected with PVY. At a 

late state of virus infection, there was no difference in stylet penetration frequency 

(pd/np) or phloem feeding behavior, probably because senescent tobacco plants 

regardless of infection status are unsuitable hosts for aphids. 

In conclusion, the results of our study suggest that PVY-infected tobacco plants 

alter the host selection and feeding behavior of vector aphids in a stage-dependent 

manner. PVY-infected tobacco attracted more aphids at a steady state of the virus 

infection, leading to more intracellular punctures on the plants that would in turn 

enhance virus transmission efficiency. These findings not only provide insight into the 

interactions between host plants, virus, and insect vectors, but are important 

considerations when developing viral disease control strategies for crops.
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Figure 1. Viral quantification by TaqMan real-time PCR (One-way analysis of variance 

followed by the least significant difference test). a Viral particle content of tobacco plants at 

different times after inoculation with PVY. The 1st to 8th day after PVY infection was defined 

as early state; the 8th to 18th day after PVYinfection was defined as steady state; the time after 

20 days of PVY infection was defined as late state. (F = 52.748; df = 6, 56; P < 0.0001) b 

Spatial pattern of changes in viral copy number in tobacco plants inoculated with PVY for 10 

days. The first leaf is the youngest leaf. Values represent mean ± standard error (F = 7.819; df 

=11, 24; P < 0.0001). 
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Figure 2. Preference of M. persicae for volatiles emitted by PVY-infected or non-infected 

tobacco plants. Different plants were used in this assay at different times post-inoculation. 

Early state: 5 days post-inoculation; steady state: 12 days post-inoculation; late state: 20 days 

post-inoculation. **P < 0.01 (Student’s t test). 
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Table 1 Stylet penetration behaviors of M. persicae on healthy and PVY-infected plants 

EPG variable 

Tobacco plants (early state) Tobacco plants (steady state） Tobacco plants (late state） 

virus-infected  

(n=23) 

Healthy 

(n=19) 
P 

virus-infected  

 (n=16) 

Healthy 

(n=20) 
P 

virus-infected  

 (n=15) 

Healthy 

 (n=13) 
P 

1 Time to 1st probe (min) 4.61±3.75 9.31±7.99 0.242 0.48±0.07a 0.60±0.09 a 0.295 9.92±8.33* 4.35±4.70 0.034 

2 Number of pd 153.68±37.04 ** 127.20±40.64 0.001 174.00±35.74** 105.881±22.90 <0.001 137.60±36.78  109.77±38.20 0.061 

3 Number of np 27.15±17.97 22.10±13.37 0.160 1.39±0.48a ** 1.03±0.67a <0.001 20.14±14.05  15.92±9.54 0.374 

4 Total duration of np (min) 57.01±32.49 57.54±26.77 0.466 51.94±25.72 34.09±26.94  0.061 47.60±33.40  44.01±34.68 0.808 

5 Total duration of np / Total record time (%) 15.00±9.04 16.17±7.70 0.519 14.43±7.13 9.57±7.41 0.465 13.22±9.29 12.33±9.60 0.828 

6 Time to phloem from the start of EPG (min) 83.78±48.82 92.54±64.10 0.124 1.75±0.07a 1.71±0.07a 0.676 67.61±50.24 96.48±83.39 0.076 

7 Number of pd during the time to phloem from the start of EPG 53.69±38.07* 39.20±31.49 0.022  51.60±18.80** 25.65±11.62 <0.001 31.21±19.57  30.64±16.24 0.934 

8 Number of E1 22.14±13.33 19.73±12.10 0.552 20.81±13.41 27.88±13.94 0.148 21.14±11.90 17.69±11.70 0.365 

9 Total duration of E1 (min) 64.13±38.05 64.63±31.91 0.869 1.79±0.42a 1.89±0.49a 0.137 66.16±32.79 62.77±40.81 0.813 

10 Total duration of E1 / Total record time (%) 17.98±10.66 18.51±9.63 0.487 18.09±6.87 25.26±13.12* 0.018 18.69±8.89 17.94±10.97 0.814 

11 Number of E2 18.00±12.60 16.05±11.37 0.771 15.81±14.35 23.29±14.09 0.141 18.08±9.46 14.92±12.81 0.819 

12 Continuous duration of E2 > 10min (times) 2.00±1.72 1.79±1.81 0.769 0.22±0.07a 0.22±0.07a 0.982 0.92±1.19 0.92±1.12 0.482 

13 Total duration of E2 (min) 77.55±66.58 75.57±54.7 0.810 60.42±47.47 74.97±39.12 0.343 54.98±37.87 40.95±41.61 0.394 

14 Total duration of E2 / Total record time (%) 19.67±15.02 20.24±11.37     0.728 16.78±13.18 21.62±11.81     0.250 15.27±10.52 11.52±11.48 0.528 

15 Total duration of E1+E2 / Total record time (%) 37.89±15.81 38.54±17.92 0.899 34.83±13.45 46.84±16.25* 0.028 34.97±9.42  31.21±17.75 0.482 

16 % of aphids showing waveform F(F>10 min) (%) b 30.43  52.63* 0.012 43.75      59.10     0.139 40.00  69.23** 0.005 

17 Total duration of C (min) 148.92±43.98 132.05±36.43 0.176 157.13±39.45* 116.93±41.77 0.049 143.62±32.17* 102.53±41.30 0.05 

18 Total duration of C / Total record time (%) 41.61±12.31 37.42±10.59     0.529  43.57±11.01 32.90±11.02    0.334 39.79 ± 9.00 29.14 ± 10.77 0.269 

Data in the table represent mean ± SE. For the same row values marked by “ * ” indicate significant differences (0.01 ＜ P ≤ 0.05);  “ ** ” indicate highly significant differences (p ≤ 0.01). 

a The data were transformed by log10 (x+1) 

b Chi-square test 

 


