89 research outputs found

    Development of Novel Microsatellite Markers in the Omei Treefrog (Rhacophorus omeimontis)

    Get PDF
    Eleven novel microsatellite markers were developed and characterized for the Omei treefrog (Rhacophorus omeimontis) using the fast isolation by AFLP of sequences containing repeats method. Polymorphism of each locus was tested in 24 individuals from two wild populations. The number of alleles per locus ranged from 4 to 15, the average observed and expected heterozygosity per locus ranged from 0.250 to 0.839 and from 0.562 to 0.914, respectively. Two of the 11 microsatellite loci showed significant deviations from Hardy-Weinberg equilibrium. Two locus pairs showed significant linkage disequilibrium. Neither evidence of scoring error due to stuttering nor evidence of large allele dropout was found at all of the 11 loci, but evidence of null alleles was indicated at two loci because of general excess of homozygotes for most allele size classes. These polymorphic loci will be useful markers in studying mate choice of the Omei treefrog

    Isolation and Characterization of Novel Microsatellite Markers in Pomegranate (Punica granatum L.)

    Get PDF
    Pomegranate (Punica granatum L.) has been cultivated from ancient times for its economic, ornamental and medicinal properties globally. Here, we report the isolation and characterization of 12 polymorphic microsatellite markers from a repeat-enriched genomic library of Punica granatum L. The genetic diversity of these loci was assessed in 60 genotypes of Punica granatum L. All loci were variable: the number of polymorphic alleles per locus ranged from two to five (average 2.9). The observed and expected heterozygosities ranged from 0.15 to 0.87 and 0.29 to 0.65, respectively. The polymorphic information content ranged from 0.26 to 0.61 (average: 0.43). To the best of our knowledge, this is the first time that polymorphic microsatellite markers have been reported for P. granatum L. These new markers should allow studies of the population structure and genetic diversity of pomegranate to be performed in the future

    Development of New Microsatellite DNA Markers from Apostichopus japonicus and Their Cross-Species Application in Parastichopus parvimensis and Pathallus mollis

    Get PDF
    Twenty microsatellite DNA markers were developed for sea cucumber and used to investigate polymorphisms of 60 wild Apostichopus japonicus individuals collected from China. It revealed that all the markers were polymorphic. A total of 164 alleles were detected at 20 loci. The number of alleles per locus varied from 3 to 17 with an average of 8.2, and the expected heterozygosities of each locus ranged from 0.03 to 0.89 with an average of 0.64. Cross-species amplification was also conducted in Parastichopus parvimensis collected from the United States and Pathallus mollis collected from Peru. The result showed that 17 loci amplified Parastichopus parvimensis DNAs while only 4 loci could amplify Pathallus mollis DNAs. All of the polymorphic markers would be useful for future genetic breeding and the assessment of genetic variation within sea cucumbers

    Isolation and Characterization of Sixteen Polymorphic Microsatellite Loci in the Golden Apple Snail Pomacea canaliculata

    Get PDF
    We report the characterization of 16 polymorphic microsatellite markers in the golden apple snail, Pomacea canaliculata, a pest registered in the list of “100 of the world’s worst invasive alien species”. The fast isolation by AFLP (Amplified Fragment Length Polymorphism) of sequences containing repeats (FIASCO) method was used to isolate microsatellite loci, and polymorphism was explored with 29 individuals collected in an invasive region from China. These primers showed a number of alleles per locus ranging from three to 13. The ranges of observed and expected heterozygosity were 0.310–0.966 and 0.523–0.898, respectively. These microsatellite markers described here will be useful for population genetic studies of P. canaliculata

    Reconciling Deep Calibration and Demographic History: Bayesian Inference of Post Glacial Colonization Patterns in Carcinus aestuarii (Nardo, 1847) and C. maenas (Linnaeus, 1758)

    Get PDF
    A precise inference of past demographic histories including dating of demographic events using Bayesian methods can only be achieved with the use of appropriate molecular rates and evolutionary models. Using a set of 596 mitochondrial cytochrome c oxidase I (COI) sequences of two sister species of European green crabs of the genus Carcinus (C. maenas and C. aestuarii), our study shows how chronologies of past evolutionary events change significantly with the application of revised molecular rates that incorporate biogeographic events for calibration and appropriate demographic priors. A clear signal of demographic expansion was found for both species, dated between 10,000 and 20,000 years ago, which places the expansions events in a time frame following the Last Glacial Maximum (LGM). In the case of C. aestuarii, a population expansion was only inferred for the Adriatic-Ionian, suggestive of a colonization event following the flooding of the Adriatic Sea (18,000 years ago). For C. maenas, the demographic expansion inferred for the continental populations of West and North Europe might result from a northward recolonization from a southern refugium when the ice sheet retreated after the LGM. Collectively, our results highlight the importance of using adequate calibrations and demographic priors in order to avoid considerable overestimates of evolutionary time scales

    The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    Get PDF
    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global FST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change
    corecore