179 research outputs found
Asymmetry and heterogeneity: part and parcel in cardiac autonomic innervation and function
The cardiac autonomic nervous system (cANS) regulates cardiac adaptation to different demands. The heart is an asymmetrical organ, and in the selection of adequate treatment of cardiac diseases it may be relevant to take into account that the cANS also has sidedness as well as regional differences in anatomical, functional, and molecular characteristics. The left and right ventricles respond differently to adrenergic stimulation. Isoforms of nitric oxide synthase, which plays an important role in parasympathetic function, are also distributed asymmetrically across the heart. Treatment of cardiac disease heavily relies on affecting left-sided heart targets which are thought to apply to the right ventricle as well. Functional studies of the right ventricle have often been neglected. In addition, many principles have only been investigated in animals and not in humans. Anatomical and functional heterogeneity of the cANS in human tissue or subjects is highly valuable for understanding left- and right-sided cardiac pathology and for identifying novel treatment targets and modalities. Within this perspective, we aim to provide an overview and synthesis of anatomical and functional heterogeneity of the cANS in tissue or subjects, focusing on the human heart.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
PERT: A Method for Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and Developmental Conditions
The cellular composition of heterogeneous samples can be predicted using an expression deconvolution algorithm to decompose their gene expression profiles based on pre-defined, reference gene expression profiles of the constituent populations in these samples. However, the expression profiles of the actual constituent populations are often perturbed from those of the reference profiles due to gene expression changes in cells associated with microenvironmental or developmental effects. Existing deconvolution algorithms do not account for these changes and give incorrect results when benchmarked against those measured by well-established flow cytometry, even after batch correction was applied. We introduce PERT, a new probabilistic expression deconvolution method that detects and accounts for a shared, multiplicative perturbation in the reference profiles when performing expression deconvolution. We applied PERT and three other state-of-the-art expression deconvolution methods to predict cell frequencies within heterogeneous human blood samples that were collected under several conditions (uncultured mono-nucleated and lineage-depleted cells, and culture-derived lineage-depleted cells). Only PERT's predicted proportions of the constituent populations matched those assigned by flow cytometry. Genes associated with cell cycle processes were highly enriched among those with the largest predicted expression changes between the cultured and uncultured conditions. We anticipate that PERT will be widely applicable to expression deconvolution strategies that use profiles from reference populations that vary from the corresponding constituent populations in cellular state but not cellular phenotypic identity
Open Access and Open Data at CGIAR: Challenges and Solutions
CGIAR is a global research partnership of 15 geographically and scientifically diverse Centers dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resource management. The Centers are charged with accelerating innovation to tackle challenges at a variety of scales from the local to the global. This requires data and other research outputs to be findable, accessible, interoperable, and reusable – that is, open via FAIR principles, and inter-linked where relevant. CGIAR Centers have made strong progress in implementing publication and data repositories; however, many of these still represent silos whose contents are not generally easily discoverable or inter-linked (e.g., agronomic trial data with socioeconomic or adoption data in the same geographies). In the absence of such interoperability-mediated discovery, “open” is of limited utility. The overall goal is for CGIAR’s trove of research data and associated information to be indexed and interlinked through a demand-driven cyberinfrastructure for agriculture, ensuring that research outputs are discoverable by humans and machines, and reusable via appropriate licensing to enhance innovation, uptake and impact.
There are challenges to achieving this goal, not only across CGIAR, but for the agricultural domain in general. Among the foremost hurdles is that “open” tends to remain an unfunded mandate, making it difficult to operationalize effectively. Further, there is still significant concern on the part of scientists about making data open – largely centered around issues of trust, time, and quality – resulting in repositories frequently exposing metadata rather than the data sets themselves. While the ability to find metadata about resources qualifies as improvement, it continues to impose barriers to data access, discoverability, integration, and analysis, without which complex challenges to global agriculture development cannot be effectively addressed. CGIAR is addressing the urgent need to create a data sharing culture and enabling environment for Open Access and Open Data (OA/OD) that includes projects planning for OA/OD and allocating funds to support it, in parallel with the technical infrastructure mentioned above.
While the technology necessary to enable FAIR outputs exists, achieving success implies data provider and consumer trust and buy-in, agreement and adherence to interoperability standards and/or mapping across varied approaches, and compliance with guidelines (including those on citation and licensing governing content reuse). Agricultural institutions, including CGIAR, are only now beginning to address these issues systematically, to agree on and adopt standards-based systems and processes, and to build cross-walks across differing schemas. Through its Open Access and Open Data initiative funded by the Bill and Melinda Gates Foundation, and via plans for an ambitious Big Data and ICT Platform , CGIAR is developing technical and cultural approaches that will enable research content to be consistently and seamlessly discovered, interlinked, and analyzed across its Centers. This paper describes the strategy used to identify the specific contexts and challenges faced by Centers in building an infrastructure and culture for OA/OD across CGIAR, with the ultimate goal of achieving greater impact in agricultural research for development
Manipulation of Signaling Thresholds in “Engineered Stem Cell Niches” Identifies Design Criteria for Pluripotent Stem Cell Screens
In vivo, stem cell fate is regulated by local microenvironmental parameters. Governing parameters in this stem cell niche include soluble factors, extra-cellular matrix, and cell-cell interactions. The complexity of this in vivo niche limits analyses into how individual niche parameters regulate stem cell fate. Herein we use mouse embryonic stem cells (mESC) and micro-contact printing (µCP) to investigate how niche size controls endogenous signaling thresholds. µCP is used to restrict colony diameter, separation, and degree of clustering. We show, for the first time, spatial control over the activation of the Janus kinase/signal transducer and activator of transcription pathway (Jak-Stat). The functional consequences of this niche-size-dependent signaling control are confirmed by demonstrating that direct and indirect transcriptional targets of Stat3, including members of the Jak-Stat pathway and pluripotency-associated genes, are regulated by colony size. Modeling results and empirical observations demonstrate that colonies less than 100 µm in diameter are too small to maximize endogenous Stat3 activation and that colonies separated by more than 400 µm can be considered independent from each other. These results define parameter boundaries for the use of ESCs in screening studies, demonstrate the importance of context in stem cell responsiveness to exogenous cues, and suggest that niche size is an important parameter in stem cell fate control
Stemming Cancer: Functional Genomics of Cancer Stem Cells in Solid Tumors
Cancer stem cells (CSCs) were discovered about 15 years ago in hematopoietic cancers. Subsequently, cancer stem cells were discovered in various solid tumors. Based on parallels with normal stem cells, a developmental process of cancer stem cells follows paths of organized, hierarchical structure of cells with different degrees of maturity. While some investigators have reported particular markers as identification of cancer stem cells, these markers require further research. In this review, we focus on the functional genomics of cancer stem cells. Functional genomics provides useful information on the signaling pathways which are consecutively activated or inactivated amongst those cells. This information is of particular importance for cancer research and clinical treatment in many respects. (1) Understanding of self-renewal mechanisms crucial to tumor growth. (2) Allow the identification of new, more specific marker for CSCs, and (3) pathways that are suitable as future targets for anti-cancer drugs. This is of particular importance, because today’s chemotherapy targets the proliferating cancer cells sparing the relatively slow dividing cancer stem cells. The first step on this long road therefore is to analyze genome-wide expression-profiles within the same type of cancer and then between different types of cancer, encircling those target genes and pathways, which are specific to these cells
Temporal changes in the epidemiology, management, and outcome from acute respiratory distress syndrome in European intensive care units: a comparison of two large cohorts
Background: Mortality rates for patients with ARDS remain high. We assessed temporal changes in the epidemiology and management of ARDS patients requiring invasive mechanical ventilation in European ICUs. We also investigated the association between ventilatory settings and outcome in these patients. Methods: This was a post hoc analysis of two cohorts of adult ICU patients admitted between May 1–15, 2002 (SOAP study, n = 3147), and May 8–18, 2012 (ICON audit, n = 4601 admitted to ICUs in the same 24 countries as the SOAP study). ARDS was defined retrospectively using the Berlin definitions. Values of tidal volume, PEEP, plateau pressure, and FiO2 corresponding to the most abnormal value of arterial PO2 were recorded prospectively every 24 h. In both studies, patients were followed for outcome until death, hospital discharge or for 60 days. Results: The frequency of ARDS requiring mechanical ventilation during the ICU stay was similar in SOAP and ICON (327[10.4%] vs. 494[10.7%], p = 0.793). The diagnosis of ARDS was established at a median of 3 (IQ: 1–7) days after admission in SOAP and 2 (1–6) days in ICON. Within 24 h of diagnosis, ARDS was mild in 244 (29.7%), moderate in 388 (47.3%), and severe in 189 (23.0%) patients. In patients with ARDS, tidal volumes were lower in the later (ICON) than in the earlier (SOAP) cohort. Plateau and driving pressures were also lower in ICON than in SOAP. ICU (134[41.1%] vs 179[36.9%]) and hospital (151[46.2%] vs 212[44.4%]) mortality rates in patients with ARDS were similar in SOAP and ICON. High plateau pressure (> 29 cmH2O) and driving pressure (> 14 cmH2O) on the first day of mechanical ventilation but not tidal volume (> 8 ml/kg predicted body weight [PBW]) were independently associated with a higher risk of in-hospital death. Conclusion: The frequency of and outcome from ARDS remained relatively stable between 2002 and 2012. Plateau pressure > 29 cmH2O and driving pressure > 14 cmH2O on the first day of mechanical ventilation but not tidal volume > 8 ml/kg PBW were independently associated with a higher risk of death. These data highlight the continued burden of ARDS and provide hypothesis-generating data for the design of future studies
Enhanced Proliferation of Monolayer Cultures of Embryonic Stem (ES) Cell-Derived Cardiomyocytes Following Acute Loss of Retinoblastoma
Background: Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms. Methodology/Principal Findings: We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are.98 % pure, and at least 85 % of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation. Conclusions/Significance: We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint an
- …