1,215 research outputs found
Editorial: Using neurophysiological signals that reflect cognitive or affective state
The central question of this Frontiers Research Topic is: What can we learn from brain and other physiological signals about an individual's cognitive and affective state and how can we use this information? This question reflects three important issues which are addressed by the 22 articles in this volume: (1) the combination of central and peripheral neurophysiological measures; (2) the diversity of cognitive and affective processes reflected by these measures; and (3) how to apply these measures in real world applications
Consequences of critical interchain couplings and anisotropy on a Haldane chain
Effects of interchain couplings and anisotropy on a Haldane chain have been
investigated by single crystal inelastic neutron scattering and density
functional theory (DFT) calculations on the model compound SrNiVO.
Significant effects on low energy excitation spectra are found where the
Haldane gap (; where is the intrachain exchange
interaction) is replaced by three energy minima at different antiferromagnetic
zone centers due to the complex interchain couplings. Further, the triplet
states are split into two branches by single-ion anisotropy. Quantitative
information on the intrachain and interchain interactions as well as on the
single-ion anisotropy are obtained from the analyses of the neutron scattering
spectra by the random phase approximation (RPA) method. The presence of
multiple competing interchain interactions is found from the analysis of the
experimental spectra and is also confirmed by the DFT calculations. The
interchain interactions are two orders of magnitude weaker than the
nearest-neighbour intrachain interaction = 8.7~meV. The DFT calculations
reveal that the dominant intrachain nearest-neighbor interaction occurs via
nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty
orbital of V ions. The present single crystal study also allows us to
correctly position SrNiVO in the theoretical - phase
diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where
it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015
Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach
According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work
Using neurophysiological signals that reflect cognitive or affective state: Six recommendations to avoid common pitfalls
Estimating cognitive or affective state from neurophysiological signals and designing applications that make use of this information requires expertise in many disciplines such as neurophysiology, machine learning, experimental psychology, and human factors. This makes it difficult to perform research that is strong in all its aspects as well as to judge a study or application on its merits. On the occasion of the special topic “Using neurophysiological signals that reflect cognitive or affective state” we here summarize often occurring pitfalls and recommendations on how to avoid them, both for authors (researchers) and readers. They relate to defining the state of interest, the neurophysiological processes that are expected to be involved in the state of interest, confounding factors, inadvertently “cheating” with classification analyses, insight on what underlies successful state estimation, and finally, the added value of neurophysiological measures in the context of an application. We hope that this paper will support the community in producing high quality studies and well-validated, useful applications
Quantifying Quantum Correlations in Fermionic Systems using Witness Operators
We present a method to quantify quantum correlations in arbitrary systems of
indistinguishable fermions using witness operators. The method associates the
problem of finding the optimal entan- glement witness of a state with a class
of problems known as semidefinite programs (SDPs), which can be solved
efficiently with arbitrary accuracy. Based on these optimal witnesses, we
introduce a measure of quantum correlations which has an interpretation
analogous to the Generalized Robust- ness of entanglement. We also extend the
notion of quantum discord to the case of indistinguishable fermions, and
propose a geometric quantifier, which is compared to our entanglement measure.
Our numerical results show a remarkable equivalence between the proposed
Generalized Robustness and the Schliemann concurrence, which are equal for pure
states. For mixed states, the Schliemann con- currence presents itself as an
upper bound for the Generalized Robustness. The quantum discord is also found
to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information
Processin
Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance
Objective: Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system's ability to decode mental states and compare it with unimodal systems.
Approach: We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data.
Main results: EEG+fNIRS's decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data.
Significance: Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics
The role of interparticle heterogeneities in the selenization pathway of Cu Zn Sn S nanoparticle thin films a real time study
Real time energy dispersive X ray diffraction EDXRD analysis has been utilized to observe the selenization of Cu Zn Sn S nanoparticle films coated from three nanoparticle populations Cu and Sn rich particles roughly 5 nm in size, Zn rich nanoparticles ranging from 10 to 20 nm in diameter, and a mixture of both types of nanoparticles roughly 1 1 by mass , which corresponds to a synthesis recipe yielding CZTSSe solar cells with reported total area efficiencies as high as 7.9 . The EDXRD studies presented herein show that the formation of copper selenide intermediates during the selenization of mixed particle films can be primarily attributed to the small, Cu and Sn rich particles. Moreover, the formation of these copper selenide phases represents the first stage of the CZTSSe grain growth mechanism. The large, Zn rich particles subsequently contribute their composition to form micrometer sized CZTSSe grains. These findings enable further development of a previously proposed selenization pathway to account for the roles of interparticle heterogeneities, which in turn provides a valuable guide for future optimization of processes to synthesize high quality CZTSSe absorber layer
Relativistic Klein-Gordon charge effects by information-theoretic measures
The charge spreading of ground and excited states of Klein-Gordon particles
moving in a Coulomb potential is quantitatively analyzed by means of the
ordinary moments and the Heisenberg measure as well as by use of the most
relevant information-theoretic measures of global (Shannon entropic power) and
local (Fisher's information) types. The dependence of these complementary
quantities on the nuclear charge Z and the quantum numbers characterizing the
physical states is carefully discussed. The comparison of the relativistic
Klein-Gordon and non-relativistic Schrodinger values is made. The
non-relativistic limits at large principal quantum number n and for small
values of Z are also reached.Comment: Accepted in New Journal of Physic
Appropriation in the development of information systems for voluntary organisations
This paper describes two action research projects in co-located voluntary organizations, where both projects could be characterized as process failures. Our main focus is on the mechanisms of appropriation. The analytic framework as well as the basis for the action research projects, have been informed by activity theory. In particular we describe how ICT-based systems enforce structural discipline, how designers may misconceive the design task when designing for voluntary organisations, how the tension between use value and exchange value influences the use and thus appropriation of ICT in voluntary organisations, and finally what the possible impact of a lacking common conceptual basis may be. It is concluded that voluntary organisations exhibit unique features that should be taken into account in the design of ICT based support
- …
