2,923 research outputs found

    Trends in stratospheric minor constituents

    Get PDF
    Photochemical models predict that increasing source gas concentrations are also expected to lead to changes in the concentrations of both catalytically active radical species (such as NO2, ClO, and OH) and inactive reservoir species (such as HNO3, HCl, and H2O). For simplicity, we will refer to all these as trace species. Those species that are expected to have increasing concentration levels are investigated. Additionally, the trace species concentration levels are monitored for unexpected changes on the basis of the measure increase in source gases. Carrying out these investigations is difficult due to the limited data base of measurements of stratospheric trace species. In situ measurements are made only infrequently, and there are few satelliteborne measurements, most over a time space insufficient for trend determination. Instead, ground-based measurements of column content must be used for many species, and interpretation is complicated by contributions from the troposphere or mesosphere or both. In this chapter, we examine existing measurements as published or tabulated

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ00.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-JJ_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    Superconducting and electro-optical thin films prepared by pulsed laser deposition technique

    Get PDF
    Cataloged from PDF version of article.The pulsed laser deposition (PLD) technique is an excellent method to prepare single crystalline complex oxide thin films. We have successfully grown films for the use in HTS SQUID-devices as well as for thin film optical waveguides. The Josephson junction used in the HTS SQUIDs is formed by a step edge type gain boundary junction. The step preparation is a very critical process in the SQUID preparation to achieve reproducible low 1/f noise devices. We have established a new ion beam etching process to achieve clean and steep edges in LaAlO(3) (100) substrates. The 1/f noise of SQUIDs prepared with the new method is drastically reduced. In the process of developing thin film electro-optical waveguide modulators we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO(3) thin films. These films are grown on MgO(1 0 0), MgAl(2)O(4)(1 0 0), SrTiO(3)(1 0 0) and MgO buffered Al(2)O(3)(1 (1) over bar 0 2) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The dielectric constant, the ferroelectric hysteresis loop and the transition temperature (ferroelectric to paraelectric state) of the BaTiO(3) thin films are measured. (C) 2000 Elsevier Science B.V. All rights reserved

    Measurements of CH4, N2O, CO, H2O and O3 in the middle atmosphere by the ATMOS experiment on Spacelab 3

    Get PDF
    The volume mixing ratios of five minor gases (CH4, N2O, CO, H2O, and O3) were retrieved through the middle atmosphere from the analysis of 0.01/cm resolution infrared solar occultation spectra recorded near 28 N and 48 S latitudes with the ATMOS (Atmospheric Trace Molecule Spectroscopy) instrument, flown on board Spacelab 3. The results, which constitute the first simultaneous observations of continuous profiles through the middle atmosphere for these gases, are in general agreement with reported measurements from ground, balloon and satellite-based instruments for the same seasons. In detail, the vertical profiles of these gases show the effects of the upper and middle atmospheric transport patterns dominant during the season of these observations. The profiles inferred at different longitudes around 28 N suggest a near-uniform zonal distribution of these gases. Although based on fewer observations, the sunrise occultation measurements point to a larger variability in the vertical distribution of these gases at 48 S

    Trends in source gases

    Get PDF
    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form

    Brachistochrone of Entanglement for Spin Chains

    Full text link
    We analytically investigate the role of entanglement in time-optimal state evolution as an appli- cation of the quantum brachistochrone, a general method for obtaining the optimal time-dependent Hamiltonian for reaching a target quantum state. As a model, we treat two qubits indirectly cou- pled through an intermediate qubit that is directly controllable, which represents a typical situation in quantum information processing. We find the time-optimal unitary evolution law and quantify residual entanglement by the two-tangle between the indirectly coupled qubits, for all possible sets of initial pure quantum states of a tripartite system. The integrals of the motion of the brachistochrone are determined by fixing the minimal time at which the residual entanglement is maximized. Entan- glement plays a role for W and GHZ initial quantum states, and for the bi-separable initial state in which the indirectly coupled qubits have a nonzero value of the 2-tangle.Comment: 9 pages, 4 figure

    Multi-Qubit Systems: Highly Entangled States and Entanglement Distribution

    Full text link
    A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.Comment: 24 pages, 3 figure

    Endovascular Treatment for Pseudoaneurysms after Surgical Correction of Aortic Coarctation

    Get PDF
    Late complications after surgical repair of aortic coarctation are not uncommon. Among these complications pseudoaneurysms are the most frequent complications, occurring between 3 and 38%. Reoperation in these patients is associated with high morbidity and mortality. In the last decade, endovascular techniques emerged as an alternative to conventional surgery with excellent results. We report the case of two patients who presented with pseudoaneurysms after surgical correction for aortic coarctation, which were treated by endovascular means
    corecore