20 research outputs found

    extinguishing metaflammation: mechanisms and therapeutic opportunities for immunological control of metabolic dysfunctions

    Get PDF
    Chronic energy surplus causes obesity and promotes insulin resistance and type 2 diabetes (T2D). A major contributor to insulin resistance is chronic, low-grade inflammation in metabolic tissues, also coined metaflammation. In this context, white adipose tissue and liver-resident innate and adaptive immune cells produce proinflammatory cytokines that exacerbate inflammation and inhibit canonical insulin signaling. Among them, macrophages and dendritic cells were shown to play central roles in metaflammation, although the environmental and cellular changes dictating proinflammatory activation in the context of obesity are not fully understood. This thesis describes novel mechanisms by which macrophages and dendritic cells control metabolic homeostasis in obese mice. In addition, we show that immunomodulatory molecules derived from parasitic worm eggs promote an immune response in metabolic tissues that maintains insulin sensitivity. Finally, we describe the pleiotropic beneficial effects of a novel plant-derived nutritional supplement on metaflammation and metabolic homeostasis in obese mice. Altogether, this work may provide new leads for interventions aimed at improving immunological control of metabolic dysfunctions.LUMC / Geneeskund

    Dendritic cell-intrinsic LKB1-AMPK/SIK signaling controls metabolic homeostasis by limiting the hepatic Th17 response during obesity

    Get PDF
    Obesity-associated metabolic inflammation drives the development of insulin resistance and type 2 diabetes, notably through modulating innate and adaptive immune cells in metabolic organs. The nutrient sensor liver kinase B1 (LKB1) has recently been shown to control cellular metabolism and T cell priming functions of DCs. Here, we report that hepatic DCs from high-fat diet-fed (HFD-fed) obese mice display increased LKB1 phosphorylation and that LKB1 deficiency in DCs (CD11c Delta LKB1) worsened HFD-driven hepatic steatosis and impaired glucose homeostasis. Loss of LKB1 in DCs was associated with increased expression of Th17-polarizing cytokines and accumulation of hepatic IL-17A+ Th cells in HFD-fed mice. Importantly, IL-17A neutralization rescued metabolic perturbations in HFD-fed CD11c Delta LKB1 mice. Mechanistically, deficiency of the canonical LKB1 target AMPK in HFD-fed CD11c Delta AMPK alpha 1 mice recapitulated neither the hepatic Th17 phenotype nor the disrupted metabolic homeostasis, suggesting the involvement of other and/ or additional LKB1 downstream effectors. We indeed provide evidence that the control of Th17 responses by DCs via LKB1 is actually dependent on both AMPK alpha 1 salt-inducible kinase signaling. Altogether, our data reveal a key role for LKB1 signaling in DCs in protection against obesityinduced metabolic dysfunctions by limiting hepatic Th17 responses.Host-parasite interactio

    Myeloid ATP citrate lyase regulates macrophage inflammatory responses in vitro without altering inflammatory disease outcomes

    Get PDF
    Macrophages are highly plastic, key regulators of inflammation. Deregulation of macrophage activation can lead to excessive inflammation as seen in inflammatory disorders like atherosclerosis, obesity, multiple sclerosis and sepsis. Targeting intracellular metabolism is considered as an approach to reshape deranged macrophage activation and to dampen the progression of inflammatory disorders. ATP citrate lyase (Acly) is a key metabolic enzyme and an important regulator of macrophage activation. Using a macrophage-specific Acly-deficient mouse model, we investigated the role of Acly in macrophages during acute and chronic inflammatory disorders. First, we performed RNA sequencing to demonstrate that Acly-deficient macrophages showed hyperinflammatory gene signatures in response to acute LPS stimulation in vitro. Next, we assessed endotoxin-induced peritonitis in myeloid-specific Acly-deficient mice and show that, apart from increased splenic Il6 expression, systemic and local inflammation were not affected by Acly deficiency. Also during obesity, both chronic low-grade inflammation and whole-body metabolic homeostasis remained largely unaltered in mice with Acly-deficient myeloid cells. Lastly, we show that macrophage-specific Acly deletion did not affect the severity of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis. These results indicate that, despite increasing inflammatory responses in vitro, macrophage Acly deficiency does not worsen acute and chronic inflammatory responses in vivo. Collectively, our results indicate that caution is warranted in prospective long-term treatments of inflammatory disorders with macrophage-specific Acly inhibitors. Together with our earlier observation that myeloid Acly deletion stabilizes atherosclerotic lesions, our findings highlight that therapeutic targeting of macrophage Acly can be beneficial in some, but not all, inflammatory disorders.Host-parasite interactio

    Sub-chronic toxicity study in rats orally exposed to nanostructured silica

    Get PDF
    Synthetic Amorphous Silica (SAS) is commonly used in food and drugs. Recently, a consumer intake of silica from food was estimated at 9.4 mg/kg bw/day, of which 1.8 mg/kg bw/day was estimated to be in the nano-size range. Food products containing SAS have been shown to contain silica in the nanometer size range (i.e. 5 – 200 nm) up to 43% of the total silica content. Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured silica

    The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake

    Get PDF
    Type 2 immunity plays an essential role in the maintenance of metabolic homeostasis and its disruption during obesity promotes meta-inflammation and insulin resistance. Infection with the helminth parasite Schistosoma mansoni and treatment with its soluble egg antigens (SEA) induce a type 2 immune response in metabolic organs and improve insulin sensitivity and glucose tolerance in obese mice, yet, a causal relationship remains unproven. Here, we investigated the effects and underlying mechanisms of the T2 ribonuclease omega-1 (omega 1), one of the major S mansoni immunomodulatory glycoproteins, on metabolic homeostasis. We show that treatment of obese mice with plant-produced recombinant omega 1, harboring similar glycan motifs as present on the native molecule, decreased body fat mass, and improved systemic insulin sensitivity and glucose tolerance in a time- and dose-dependent manner. This effect was associated with an increase in white adipose tissue (WAT) type 2 T helper cells, eosinophils, and alternatively activated macrophages, without affecting type 2 innate lymphoid cells. In contrast to SEA, the metabolic effects of omega 1 were still observed in obese STAT6-deficient mice with impaired type 2 immunity, indicating that its metabolic effects are independent of the type 2 immune response. Instead, we found that omega 1 inhibited food intake, without affecting locomotor activity, WAT thermogenic capacity or whole-body energy expenditure, an effect also occurring in leptin receptor-deficient obese and hyperphagic db/db mice. Altogether, we demonstrate that while the helminth glycoprotein omega 1 can induce type 2 immunity, it improves whole-body metabolic homeostasis in obese mice by inhibiting food intake via a STAT6-independent mechanism.Radiolog

    Soluble mannose receptor induces proinflammatory macrophage activation and metaflammation

    Get PDF
    Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/ NF-kappa B-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.Diabetes mellitus: pathophysiological changes and therap
    corecore