338 research outputs found

    Mitochondrial permeability transition is a central coordinating event of apoptosis.

    Full text link
    In a number of experimental systems, the early stage o the apoptotic process, i.e. the stage that precedes nuclear disintegration, is characterized by the breakdown of the inner mitochondrial transmembrane potential (ΔΨ(m)). This ΔΨ(m) disruption is mediated by the opening of permeability transition (PT) pores and appears to be critical for the apoptotic cascade, since it is directly regulated by Bcl-2 and since mitochondria induced to undergo PT in vitro become capable of inducing nuclear chromatinolysis in a cell-free system of apoptosis. Here, we addressed the question of which apoptotic events are secondary to mitochondrial PT. We tested the effect of a specific inhibitor of PT, bongkrekic acid (BA), a ligand of the mitochondrial academic nucleotide translocator, on a prototypic model of apoptosis; glucocorticoid-induced thymocyte death. In addition to abolishing the apoptotic ΔΨ(m) disruption, BA prevents a number of phenomena linked to apoptosis: depletion of nonoxidized glutathione, genetic generation of reactive oxygen species, translocation of NFκB, exposure of phosphatidylserine residues on the outer plasma membrane, cytoplasmic vacuolization, chromatin condensation, and oligonucleosomal DNA fragmentation. BA is also an efficient inhibitor of p53- dependent thymocyte apoptosis induced by DNA damaged. These data suggest that a number of apoptotic phenomona are secondary to PT. In addition, we present data indicating that apoptotic ΔΨ(m) disruption is secondary to transcriptional events. These data connect the PT control point to the p53- and ICE/Ced 3-regulated control points of apoptosis and place PT upstream of nuclear and plasma membrane features of PCD.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin

    Get PDF
    Hyperglycemia is detrimental to β-cell viability, playing a major role in the progression of β-cell loss in diabetes mellitus. The permeability transition pore (PTP) is a mitochondrial channel involved in cell death. Recent evidence suggests that PTP inhibitors prevent hyperglycemia-induced cell death in human endothelial cells. In this work, we have examined the involvement of PTP opening in INS-1 cell death induced by high levels of glucose or fructose. PTP regulation was studied by measuring the calcium retention capacity in permeabilized INS-1 cells and by confocal microscopy in intact INS-1 cells. Cell death was analyzed by flow cytometry. We first reported that metformin and cyclosporin A (CsA) prevented Ca2+-induced PTP opening in permeabilized and intact INS-1 cells. We then showed that incubation of INS-1 cells in the presence of 30 mM glucose or 2.5 mM fructose induced PTP opening and led to cell death. As both metformin and CsA prevented glucose- and fructose- induced PTP opening, and hampered glucose- and fructose- induced cell death, we conclude that PTP opening is involved in high glucose- and high fructose- induced INS-1 cell death. We therefore suggest that preventing PTP opening might be a new approach to preserve β-cell viability

    MAVS-Mediated Apoptosis and Its Inhibition by Viral Proteins

    Get PDF
    BACKGROUND: Host responses to viral infection include both immune activation and programmed cell death. The mitochondrial antiviral signaling adaptor, MAVS (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), however its role in virus-induced apoptotic responses has not been elucidated. PRINCIPAL FINDINGS: We show that MAVS causes apoptosis independent of its function in initiating IFN-I production. MAVS-induced cell death requires mitochondrial localization, is caspase dependent, and displays hallmarks of apoptosis. Furthermore, MAVS(-/-) fibroblasts are resistant to Sendai virus-induced apoptosis. A functional screen identifies the hepatitis C virus NS3/4A and the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) nonstructural protein (NSP15) as inhibitors of MAVS-induced apoptosis, possibly as a method of immune evasion. SIGNIFICANCE: This study describes a novel role for MAVS in controlling viral infections through the induction of apoptosis, and identifies viral proteins which inhibit this host response

    Synthesis and Biological Evaluation of 2-Methyl-4,5-Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents

    Get PDF
    Antimitotic agents that interfere with microtubule formation are one of the major classes of cytotoxic drugs for cancer treatment. Multiple 2-methyl-4-(3′,4′,5′-trimethoxyphenyl)-5-substituted oxazoles and their related 4-substituted-5-(3′,4′,5′-trimethoxyphenyl) regioisomeric derivatives designed as cis-constrained combretastatin A-4 (CA-4) analogues were synthesized and evaluated for their antiproliferative activity in vitro against a panel of cancer cell lines and, for selected highly active compounds, interaction with tubulin, cell cycle effects and in vivo potency. Both these series of compounds were characterized by the presence of a common 3′,4′,5′-trimethoxyphenyl ring at either the C-4 or C-5 position of the 2-methyloxazole ring. Compounds 4g and 4i, bearing a m-fluoro-p-methoxyphenyl or p-ethoxyphenyl moiety at the 5-position of 2-methyloxazole nucleus, respectively, exhibited the greatest antiproliferative activity, with IC50 values of 0.35-4.6 nM (4g) and 0.5–20.2 nM (4i), which are similar to those obtained with CA-4. These compounds bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. Furthermore, 4i strongly induced apoptosis that follows the mitochondrial pathway. In vivo, 4i in a mouse syngeneic model demonstrated high antitumor activity which significantly reduced the tumor mass at doses ten times lower than that required for CA-4P, suggesting that 4i warrants further evaluation as a potential anticancer drug

    Role of GD3-CLIPR-59 Association in Lymphoblastoid T Cell Apoptosis Triggered by CD95/Fas

    Get PDF
    We previously found that a directional movement of the raft component GD3 towards mitochondria, by its association with microtubules, was mandatory to late apoptogenic events triggered by CD95/Fas. Since CLIPR-59, CLIP-170-related protein, has recently been identified as a microtubule binding protein associated with lipid rafts, we analyzed the role of GD3-CLIPR-59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. To test whether CLIPR-59 could play a role at the raft-microtubule junction, we performed a series of experiments by using immunoelectron microscopy, static or flow cytometry and biochemical analyses. We first assessed the presence of CLIPR-59 molecule in lymphoblastoid T cells (CEM). Then, we demonstrated that GD3-microtubule interaction occurs via CLIPR-59 and takes place at early time points after CD95/Fas ligation, preceding the association GD3-tubulin. GD3-CLIPR-59 association was demonstrated by fluorescence resonance energy transfer (FRET) analysis. The key role of CLIPR-59 in this dynamic process was clarified by the observation that silencing CLIPR-59 by siRNA affected the kinetics of GD3-tubulin association, spreading of GD3 towards mitochondria and apoptosis execution. We find that CLIPR-59 may act as a typical chaperone, allowing a prompt interaction between tubulin and the raft component GD3 during cell apoptosis triggered by CD95/Fas. On the basis of the suggested role of lipid rafts in conveying pro-apoptotic signals these results disclose new perspectives in the understanding of the mechanisms by which raft-mediated pro-apoptotic signals can directionally reach their target, i.e. the mitochondria, and trigger apoptosis execution

    Analysis of Waste Management in The Village of Disanah, District of Sreseh Sampang, Madura

    Get PDF
    Waste is something that is always present in our daily lives. All the activities will inevitably result in the waste and so is going on in the village of Disanah, District of Sreseh, Sampang. The problem of this research is the process of waste management, which can’t be categorised as good because the process is done by discharge management is not in the appropriate place and dispose it using the combustion process. The purpose of this study was to determine the existing waste management system in the village of Disanah, District of Sreseh, Sampang. The method used on this research is a qualitative study design with observational descriptive. It conducted by field surveys, focus group discussions with participants, open interviews, and literature study. Participants used in this study is representative of the Environment Agency, the village head, village councils, youth clubs and organizations in the village. The study states that waste management still in the unfavorable category, this is due to many factors: the lack of land for the construction of temporary shelters, facilities and infrastructures are not good enough and the level of public awareness is still low about the importance to manage waste properly. The advice can be given is to socialize, to schedule regular cleanup to clean the village and create a budget for land acquisition, which will be used for temporary shelter

    Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole

    Get PDF
    A novel series of tubulin polymerization inhibitors, based on the 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8 nM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3'-chloro-4'-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation

    Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis

    Get PDF
    Apoptosis was induced by treating L1210 leukaemia cells with mechlorethamine, and SW620 colorectal cells with doxorubicin. The onset and progression of apoptosis were monitored by assessing caspase activation, mitochondrial transmembrane potential, phosphatidylserine externalization, DNA fragmentation and cell morphology. In parallel, 31P magnetic resonance (MR) spectra of cell extracts were recorded. In L1210 cells, caspase activation was detected at 4 h. By 3 h, the MR spectra showed a steady decrease in NTP and NAD, and a significant build-up of fructose 1,6-bisphosphate (F-1,6-P) dihydroxyacetonephosphate and glycerol-3-phosphate, indicating modulation of glycolysis. Treatment with iodoacetate also induced a build-up of F-1,6-P, while preincubation with two poly(ADP-ribose) polymerase inhibitors, 3-aminobenzamide and nicotinamide, prevented the drop in NAD and the build-up of glycolytic intermediates. This suggested that our results were due to inhibition of glyceraldehyde-3-phosphate dehydrogenase, possibly as a consequence of NAD depletion following poly(ADP-ribose) polymerase activation. Doxorubicin treatment of the adherent SW620 cells caused cells committed to apoptosis to detach. F-1,6-P was observed in detached cells, but not in treated cells that remained attached. This indicated that our observations were not cell line- or treatment-specific, but were correlated with the appearance of apoptotic cells following drug treatment. The 31P MR spectrum of tumours responding to chemotherapy could be modulated by similar effects

    Clinicopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma

    Get PDF
    Mitochondrial DNA mutations have been reported in several types of tumours, including head and neck squamous cell carcinoma (HNSCC). The noncoding region of the Displacement-Loop (D-Loop) has emerged as a mutational hotspot and we recently found that they were associated with prognosis and response to 5 fluorouracil (5FU) in colon cancers. In order to evaluate the frequence of D-Loop mutations in a large series of HNSCC and establish correlations with clinicopathologic parameters, we sequenced the D-Loop of 109 HNSCC before a treatment by neoadjuvant 5FU-cisplatin-based chemotherapy and surgery. Then, we correlated these mutations with prognosis and response to chemotherapy. A D-Loop mutation was identified in 21% of the tumors, the majority of them were located in a C-tract (D310). The prevalence of D310 mutations increased significantly with the number of cytosines in the matched normal tissue sequence (P=0.02). Hypopharyngeal cancer was significantly more frequent (P=0.03) and tobacco consumption more important (P=0.01) in the group of patients with D-Loop mutation. The presence of D-Loop mutation was not associated with prognosis or with response to neoadjuvant chemotherapy. These results suggest that D-Loop mutations should be considered as a cancer biomarker that may be useful for the early detection of HNSCC in individuals at risk of this cancer

    Bax Function in the Absence of Mitochondria in the Primitive Protozoan Giardia lamblia

    Get PDF
    Bax-induced permeabilization of the mitochondrial outer membrane and release of cytochrome c are key events in apoptosis. Although Bax can compromise mitochondria in primitive unicellular organisms that lack a classical apoptotic machinery, it is still unclear if Bax alone is sufficient for this, or whether additional mitochondrial components are required. The protozoan parasite Giardia lamblia is one of the earliest branching eukaryotes and harbors highly degenerated mitochondrial remnant organelles (mitosomes) that lack a genome. Here we tested whether human Bax expressed in Giardia can be used to ablate mitosomes. We demonstrate that these organelles are neither targeted, nor compromised, by Bax. However, specialized compartments of the regulated secretory pathway are completely ablated by Bax. As a consequence, maturing cyst wall proteins that are sorted into these organelles are released into the cytoplasm, causing a developmental arrest and cell death. Interestingly, this ectopic cargo release is dependent on the carboxy-terminal 22 amino acids of Bax, and can be prevented by the Bax-inhibiting peptide Ku70. A C-terminally truncated Bax variant still localizes to secretory organelles, but is unable to permeabilize these membranes, uncoupling membrane targeting and cargo release. Even though mitosomes are too diverged to be recognized by Bax, off-target membrane permeabilization appears to be conserved and leads to cell death completely independently of mitochondria
    • …
    corecore